
NTRU Prime: round 2

20190330

Principal submitter

This submission is from the following team, listed in alphabetical order:

• Daniel J. Bernstein, University of Illinois at Chicago
• Chitchanok Chuengsatiansup, INRIA and ENS de Lyon
• Tanja Lange, Technische Universiteit Eindhoven
• Christine van Vredendaal, Technische Universiteit Eindhoven

E-mail address (preferred): authorcontact-ntruprime@box.cr.yp.to

Telephone (if absolutely necessary): +1-312-996-3422

Postal address (if absolutely necessary): Daniel J. Bernstein, Department of Computer Sci-
ence, University of Illinois at Chicago, 851 S. Morgan (M/C 152), Room 1120 SEO, Chicago,
IL 60607–7053.

Auxiliary submitters: There are no auxiliary submitters. The principal submitter is the
team listed above.

Inventors/developers: The inventors/developers of this submission are the same as the
principal submitter. Relevant prior work is credited below where appropriate.

Owner: Same as submitter.

Signature: ×. See also printed version of “Statement by Each Submitter”.

Document generated with the help of pqskeleton version 20190309.

1

Contents

1 Introduction 5

2 General algorithm specification (part of 2.B.1) 5

2.1 Shared notation . 6

2.2 Shared theorems . 7

2.3 Streamlined NTRU Prime . 8

2.3.1 Streamlined NTRU Prime Core parameter space 8

2.3.2 Streamlined NTRU Prime Core key generation 8

2.3.3 Streamlined NTRU Prime Core encryption 8

2.3.4 Streamlined NTRU Prime Core decryption 9

2.3.5 Streamlined NTRU Prime parameter space 9

2.3.6 Streamlined NTRU Prime key generation 10

2.3.7 Streamlined NTRU Prime encapsulation 10

2.3.8 Streamlined NTRU Prime decapsulation 10

2.4 NTRU LPRime . 11

2.4.1 NTRU LPRime Core parameter space 11

2.4.2 NTRU LPRime Core key generation 11

2.4.3 NTRU LPRime Core encryption . 11

2.4.4 NTRU LPRime Core decryption . 12

2.4.5 NTRU LPRime Expand parameter space 13

2.4.6 NTRU LPRime Expand key generation 13

2.4.7 NTRU LPRime Expand encryption 13

2.4.8 NTRU LPRime Expand decryption 13

2.4.9 NTRU LPRime parameter space . 14

2.4.10 NTRU LPRime key generation . 14

2.4.11 NTRU LPRime encapsulation . 14

2.4.12 NTRU LPRime decapsulation . 15

2

3 List of parameter sets (part of 2.B.1) 15

3.1 Shared choices of parameters . 16

3.2 Shared choices of Streamlined NTRU Prime parameters 17

3.3 Shared choices of NTRU LPRime parameters 19

3.4 Parameter set kem/sntrup653 . 20

3.5 Parameter set kem/sntrup761 . 20

3.6 Parameter set kem/sntrup857 . 21

3.7 Parameter set kem/ntrulpr653 . 21

3.8 Parameter set kem/ntrulpr761 . 21

3.9 Parameter set kem/ntrulpr857 . 21

4 Design rationale (part of 2.B.1) 21

4.1 The ring . 21

4.2 The public key . 22

4.3 Inputs and ciphertexts . 22

4.4 Key generation and decryption . 25

4.5 Padding, KEMs, and the choice of q . 26

4.6 The shape of small polynomials . 28

4.7 Modifications for round 2 . 29

5 Detailed performance analysis (2.B.2) 32

5.1 Space . 32

5.2 Time . 33

5.3 Does key-generation time matter? . 33

5.4 Do encapsulation time and decapsulation time matter? 34

5.5 How parameters affect performance . 34

6 Analysis of known attacks (2.B.5) 35

6.1 Warnings . 35

6.2 Attack problems . 36

3

6.3 Lattice perspectives on the attack problems 38

6.4 Estimate all the {LWE,NTRU} schemes! . 40

6.5 Rotations . 44

6.6 Interlude: memory, parallelization, and the cost of sorting 45

6.7 Meet-in-the-middle attack . 46

6.8 Hybrid attacks . 48

6.9 The cost of BKZ . 53

6.10 Algebraic attacks . 56

6.11 A selection of estimates . 56

7 Expected strength (2.B.4) in general 58

7.1 Security definitions . 58

7.2 Quantitative security and rationale . 60

8 Expected strength (2.B.4) for each parameter set 66

8.1 Parameter set kem/sntrup653 . 66

8.2 Parameter set kem/sntrup761 . 66

8.3 Parameter set kem/sntrup857 . 66

8.4 Parameter set kem/ntrulpr653 . 67

8.5 Parameter set kem/ntrulpr761 . 67

8.6 Parameter set kem/ntrulpr857 . 67

9 Advantages and limitations (2.B.6) 67

References 70

4

1 Introduction

A 2015 algorithm breaks dimension-N SVP (under plausible assumptions) in time 2(c+o(1))N

as N → ∞ with c ≈ 0.292. See [16]. For comparison, the best algorithm known just five
years earlier had a much worse c ≈ 0.415, and the best algorithm known just ten years before
that took time 2Θ(N logN).

Gentry’s original FHE system at STOC 2009, with standard “cyclotomic” choices of rings,
is now known (again under plausible assumptions) to be broken in polynomial time by a
quantum algorithm. See [27]. Peikert claimed in 2015 that the weakness in Gentry’s system
was specific to Gentry’s short generators and inapplicable to Ideal-SVP:

Although cyclotomics have a lot of structure, nobody has yet found a way to
exploit it in attacking Ideal-SVP/BDD . . . For commonly used rings, principal
ideals are an extremely small fraction of all ideals. . . . The weakness here is not
so much due to the structure of cyclotomics, but rather to the extra structure of
principal ideals that have short generators.

However, the attack was then combined with further features of cyclotomics to break Ideal-
SVP (again under plausible assumptions) with approximation factor 2N

1/2+o(1)
, a terrifying

advance compared to the previous 2N
1+o(1)

. See [39].

As these attack examples illustrate, the security of lattice-based cryptography is not well
understood. There are serious risks of further advances in

• SVP algorithms,

• algorithms that exploit the “approximation factors” used in cryptography,

• algorithms that exploit the structure of cryptographic problems such as LWE,

• algorithms that exploit the multiplicative structure of efficient cryptographic problems
such as Ring-LWE,

• algorithms that exploit the structure of these problems for the specific rings chosen by
users, and

• algorithms to break cryptosystems without breaking these problems.

The point of this submission is that the attack surface in lattice-based cryptography can be
significantly reduced with only a minor loss of efficiency. In fact, despite the extra security
criteria imposed below, the two cryptosystems in this submission are two of the smallest and
fastest lattice-based cryptosystems.

2 General algorithm specification (part of 2.B.1)

This submission provides two KEMs: “Streamlined NTRU Prime” and “NTRU LPRime”.
Description modularized for round 2, and CCA transforms modified.

5

2.1 Shared notation

In each system defined below, three of the parameters are a prime number p, a prime number
q, and a positive integer w. The parameter restrictions below imply that q ≥ 17, that w ≤ p,
and that xp − x− 1 is irreducible in the polynomial ring (Z/q)[x].

We abbreviate the ring Z[x]/(xp − x − 1), the ring (Z/3)[x]/(xp − x − 1), and the field
(Z/q)[x]/(xp − x − 1) as R, R/3, and R/q respectively. We refer to an element of R as
small if all of its coefficients are in {−1, 0, 1}, and weight w if exactly w of its coefficients
are nonzero. Define Short as the set of small weight-w elements of R.

Define Rounded as the set of polynomials r0 + r1x + · · · + rp−1x
p−1 ∈ R where each

coefficient ri is in {−(q − 1)/2, . . . ,−6,−3, 0, 3, 6, . . . , (q − 1)/2} for q ∈ 1 + 3Z, or in
{−(q + 1)/2, . . . ,−6,−3, 0, 3, 6, . . . , (q + 1)/2} for q ∈ 2 + 3Z.

Define Round : R/q → Rounded as follows: if ai ∈ {−(q − 1)/2, . . . , (q − 1)/2}, and ri is the
element of 3Z closest to ai, then Round(a0 +a1x+ · · ·+ap−1x

p−1) = r0 +r1x+ · · ·+rp−1x
p−1.

Note that Round(r) = r + e for some small e ∈ R.

Further notation varies between Streamlined NTRU Prime and NTRU LPRime, as summa-
rized in the following tables. The underlining distinguishes mathematical objects such as
SecretKeys = Short×R/3 or SecretKeys = Short from sets of strings such as SecretKeys.

Streamlined Streamlined
NTRU Prime Core NTRU Prime

public-key space PublicKeys = R/q PublicKeys′ = PublicKeys
secret-key space SecretKeys SecretKeys′ = SecretKeys×

= Short×R/3 PublicKeys× Inputs
input space Inputs = Short not applicable (KEM)
ciphertext Ciphertexts Ciphertexts′

space = Rounded = Ciphertexts× Confirm
key generation KeyGen KeyGen′

public-key Encrypt Encap
operation
secret-key Decrypt Decap
operation

6

NTRU LPRime NTRU LPRime NTRU LPRime
Core Expand

public-key PublicKeys = PublicKeys′ = PublicKeys′′ = PublicKeys′

space R/q × Rounded Seeds× Rounded
secret-key SecretKeys = Short SecretKeys = Short SecretKeys′ = SecretKeys×
space PublicKeys′ × Inputs

input space Inputs = {0, 1}I Inputs = {0, 1}I not applicable (KEM)
ciphertext Ciphertexts = Ciphertexts = Ciphertexts′ =
space Rounded× (Z/τ)I Rounded× (Z/τ)I Ciphertexts× Confirm
key generation KeyGen KeyGen′ KeyGen′′

public-key Encrypt Encrypt′ Encap
operation
secret-key Decrypt Decrypt Decap
operation

2.2 Shared theorems

Theorem 1. Fix integers p ≥ 3 and w ≥ 1. Let g ∈ Z[x] be a polynomial of degree at
most p − 1 with each coefficient in {−1, 0, 1}. Let i be an integer with 0 ≤ i < p. Then
xig mod xp − x− 1 has each coefficient in {−2,−1, 0, 1, 2}.

Proof. Write g as
∑p−1

j=0 gjx
j. By assumption g0, g1, . . . , gp−1 ∈ {−1, 0, 1}. Observe that

xg mod xp − x − 1 = gp−1 + (g0 + gp−1)x + g1x
2 + · · · + gp−2x

p−1, which has g0 + gp−1 ∈
{−2,−1, 0, 1, 2} and all other coefficients in {−1, 0, 1}. More generally, for 0 ≤ i < p, we
get xig mod xp − x− 1 = gp−i + (gp−i + gp−i−1)x+ · · ·+ (gp−2 + gp−1)xi−1 + (gp−1 + g0)xi +
g1x

i+1 + · · ·+ gp−i−1x
p−1 with all coefficients in {−2,−1, 0, 1, 2}.

Theorem 2. Fix integers p ≥ 3 and w ≥ 1. Let r, g ∈ Z[x] be polynomials of degree at most
p − 1 with all coefficients in {−1, 0, 1}. Assume that r has at most w nonzero coefficients.
Then gr mod xp − x− 1 has each coefficient in the interval [−2w, 2w].

Proof. Write r as
∑p−1

i=0 rix
i. By assumption ri ∈ {−1, 0, 1}. Define S = {i : ri 6= 0}; then S

has at most w elements, and r =
∑

i∈S rix
i. Each coefficient of xig mod xp − x− 1 is in the

range [−2, 2] by Theorem 2. Each coefficient of rg mod xp−x−1 =
∑

i∈S rix
ig mod xp−x−1

is therefore in the range [−2w, 2w].

Theorem 3. Fix integers p ≥ 3 and w ≥ 1. Let m, r, f, g ∈ Z[x] be polynomials of degree
at most p − 1 with all coefficients in {−1, 0, 1}. Assume that f and r each have at most
w nonzero coefficients. Then 3fm + gr mod xp − x − 1 has each coefficient in the interval
[−8w, 8w].

Proof. By Theorem 2, gr mod xp − x− 1 has each coefficient in the interval [−2w, 2w], and
fm mod xp − x− 1 has each coefficient in the interval [−2w, 2w].

7

2.3 Streamlined NTRU Prime

Streamlined NTRU Prime has two layers. The inner layer is Streamlined NTRU Prime
Core, a perfectly correct deterministic PKE. The outer layer is Streamlined NTRU Prime,
a perfectly correct KEM.

Applications are expected to use solely the outer layer. We present the two layers separately
to assist reviewers and implementors.

2.3.1 Streamlined NTRU Prime Core parameter space

Streamlined NTRU Prime Core has parameters (p, q, w) subject to the following restrictions:
p is a prime number; q is a prime number; w is a positive integer; 2p ≥ 3w; q ≥ 16w + 1;
xp − x− 1 is irreducible in the polynomial ring (Z/q)[x].

2.3.2 Streamlined NTRU Prime Core key generation

Define PublicKeys = R/q and SecretKeys = Short×R/3. The following randomized algorithm
KeyGen outputs an element of PublicKeys× SecretKeys:

• Generate a uniform random small element g ∈ R. Repeat this step until g is invertible
in R/3. (There are various standard ways to test invertibility: for example, one can
check divisibility of g by the irreducible factors of xp − x − 1 modulo 3, or one can
deduce invertibility as a side effect of various algorithms to compute 1/g in R/3.)

• Compute 1/g in R/3.

• Generate a uniform random f ∈ Short. (Note that f is nonzero and hence invertible
in R/q, since w ≥ 1.)

• Compute h = g/(3f) in R/q. (By assumption q is a prime larger than 3, so 3 is
invertible in R/q, so 3f is invertible in R/q.)
• Output (h, (f, 1/g)) ∈ PublicKeys× SecretKeys.

2.3.3 Streamlined NTRU Prime Core encryption

Define Inputs = Short and Ciphertexts = Rounded. The following deterministic algorithm
Encrypt maps Inputs× PublicKeys to Ciphertexts:

• Input r ∈ Inputs and h ∈ PublicKeys.

• Compute hr ∈ R/q.
• Output Round(hr).

8

2.3.4 Streamlined NTRU Prime Core decryption

The following deterministic algorithm Decrypt maps Ciphertexts× SecretKeys to Inputs:

• Input c ∈ Ciphertexts and (f, v) ∈ Short×R/3.

• Compute 3fc ∈ R/q. (One can multiply c by 3 and then by f , or multiply c by a
precomputed 3f , or multiply c by f and then by 3.)

• View each coefficient of 3fc in R/q as an integer between −(q − 1)/2 and (q − 1)/2,
and then reduce modulo 3, obtaining a polynomial e ∈ R/3.

• Multiply by v in R/3.

• Lift ev in R/3 to a small polynomial r′ ∈ R.

• Output r′ if r′ has weight w. Otherwise output (1, 1, . . . , 1, 0, 0, . . . , 0). (Implementors
must be careful to avoid leaking secret information through side channels, and in
particular must avoid implementing the weight test here as a branch.)

Theorem 4. Assume that KeyGen() outputs (h, k) ∈ PublicKeys × SecretKeys. Then
Decrypt(Encrypt(r, h), k) = r for each r ∈ Inputs.

Proof. By definition of SecretKeys, k has the form (f, v) with f ∈ Short and v ∈ R/3. By
definition of KeyGen, v = 1/g for some small g ∈ R, and h = g/(3f) in R/q.

Define c = Encrypt(r, h). Then c = Round(hr) ∈ Rounded by definition of Encrypt; i.e., c
is obtained by rounding the coefficients of hr, viewed as integers between −(q − 1)/2 and
(q − 1)/2, to the nearest multiples of 3. Hence c = m + hr in R/q, where m is small; so
3fc = 3fm+ 3fhr = 3fm+ gr in R/q.

To finish we trace through Decrypt(c, k). All coefficients of the polynomial 3fm + gr in
R are in [−8w, 8w] by Theorem 3, and thus in [−(q − 1)/2, (q − 1)/2] since q ≥ 16w + 1.
Viewing each coefficient of 3fc in R/q as an integer in [−(q− 1)/2, (q− 1)/2] thus produces
exactly 3fm + gr ∈ R, and reducing modulo 3 produces gr ∈ R/3; i.e., e = gr in R/3, so
ev = e/g = r in R/3. Lifting now produces exactly r since r is small; i.e., r′ = r. Also r has
weight w, so r′ has weight w, and Decrypt(c, k) outputs r.

2.3.5 Streamlined NTRU Prime parameter space

Streamlined NTRU Prime has the Streamlined NTRU Prime Core parameters, plus the
following parameters:

• sets SessionKeys,Confirm,PublicKeys, SecretKeys, Inputs,Ciphertexts of strings, each set
being the set of all strings of a specified length;

• deterministic encoding algorithms PublicKeys→ PublicKeys, SecretKeys→ SecretKeys,
Inputs→ Inputs, and Ciphertexts→ Ciphertexts;

• deterministic decoding algorithms PublicKeys→ PublicKeys, SecretKeys→ SecretKeys,
Inputs→ Inputs, and Ciphertexts→ Ciphertexts that always invert encoding;

9

• a deterministic algorithm HashConfirm : Inputs× PublicKeys→ Confirm; and

• a deterministic algorithm HashSession : {0, 1} × Inputs × Ciphertexts × Confirm →
SessionKeys.

2.3.6 Streamlined NTRU Prime key generation

The following randomized algorithm KeyGen′ outputs an element of PublicKeys×SecretKeys′,
where SecretKeys′ = SecretKeys× PublicKeys× Inputs:

• Compute (K, k)← KeyGen().

• Encode K as a string K ∈ PublicKeys.

• Encode k as a string k ∈ SecretKeys.

• Generate a uniform random ρ ∈ Inputs.

• Output (K, (k,K, ρ)).

Modification after round 1: The secret key now contains a ρ component used for implicit
rejection.

2.3.7 Streamlined NTRU Prime encapsulation

The following randomized algorithm Encap, given an element of PublicKeys, outputs an
element of Ciphertexts′ × SessionKeys, where Ciphertexts′ = Ciphertexts× Confirm:

• Input K ∈ PublicKeys. Decode K, obtaining K ∈ PublicKeys.

• Generate a uniform random r ∈ Inputs. Encode r as a string r ∈ Inputs.

• Compute c = Encrypt(r,K) ∈ Ciphertexts. Encode c as a string c ∈ Ciphertexts.

• Compute C = (c,HashConfirm(r,K)) ∈ Ciphertexts× Confirm.

• Output (C,HashSession(1, r, C)).

Modification after round 1: HashConfirm is now given access to the public key K as an
extra input, and HashSession is now given access to the ciphertext C as an extra input.

2.3.8 Streamlined NTRU Prime decapsulation

The following deterministic algorithm Decap, given an element of Ciphertexts′ × SecretKeys′,
outputs an element of SessionKeys:

• Input C = (c, γ) ∈ Ciphertexts × Confirm and (k,K, ρ) ∈ SecretKeys × PublicKeys ×
Inputs.

• Decode c, obtaining c ∈ Ciphertexts.

• Decode k, obtaining k ∈ SecretKeys.

10

• Compute r′ = Decrypt(c, k) ∈ Inputs.

• Compute r′, c′, c′, C ′ as in Encap.

• If C ′ = C then output HashSession(1, r, C). Otherwise output HashSession(0, ρ, C).
(The choice between these two outputs is secret information.)

Modification after round 1: Rejection is now implicit instead of explicit.

2.4 NTRU LPRime

NTRU LPRime has three layers. The inner layer is NTRU LPRime Core, a perfectly cor-
rect randomized PKE. The middle layer is NTRU LPRime Expand, a perfectly correct
deterministic PKE. The outer layer is NTRU LPRime, a perfectly correct KEM.

Applications are expected to use solely the outer layer. We present the three layers separately
to assist reviewers and implementors.

2.4.1 NTRU LPRime Core parameter space

NTRU LPRime Core has parameters (p, q, w, δ, I) subject to the following restrictions: p is
a prime number; q is a prime number; w, δ, I are positive integers; 2p ≥ 3w; I is a multiple
of 8; p ≥ I; q ≥ 16w + 2δ + 3; xp − x− 1 is irreducible in the polynomial ring R/q.

NTRU LPRime Core also has the following parameters: a positive integer τ ; a deterministic
algorithm Top : Z/q → Z/τ ; and a deterministic algorithm Right : Z/τ → Z/q such that the
difference Right(Top(C))− C ∈ Z/q is in {0, 1, . . . , δ} for each C ∈ Z/q.

2.4.2 NTRU LPRime Core key generation

Define PublicKeys = R/q × Rounded and SecretKeys = Short. The following randomized
algorithm KeyGen outputs an element of PublicKeys× SecretKeys:

• Generate a uniform random G ∈ R/q. (NTRU LPRime Expand will replace the
randomness used in this step with output of a specific RNG.)

• Generate a uniform random a ∈ Short.

• Compute aG ∈ R/q.
• Output ((G,Round(aG)), a) ∈ PublicKeys× SecretKeys.

2.4.3 NTRU LPRime Core encryption

Define Inputs = {0, 1}I and Ciphertexts = Rounded × (Z/τ)I . The following randomized
algorithm Encrypt maps Inputs× PublicKeys to Ciphertexts:

11

• Input r = (r0, r1, . . . , rI−1) ∈ Inputs and (G,A) ∈ PublicKeys.

• Generate a uniform random b ∈ Short. (NTRU LPRime Expand will replace the
randomness used in this step with output of a specific RNG.)

• Compute bG in R/q.
• Compute bA in R/q. (Only the bottom I coefficients of bA, the coefficients

(bA)0, (bA)1, . . . , (bA)I−1 of x0, x1, . . . , xI−1 respectively, will be used; other coefficients
do not need to be computed.)

• Compute T = (T0, T1, . . . , TI−1) ∈ (Z/τ)I as follows: Tj = Top((bA)j + rj(q − 1)/2).

• Output (Round(bG), T) ∈ Ciphertexts.

2.4.4 NTRU LPRime Core decryption

The following deterministic algorithm Decrypt maps Ciphertexts× SecretKeys to Inputs:

• Input (B, T) ∈ Rounded× (Z/τ)I and a ∈ SecretKeys.

• Compute aB in R/q. (Only the bottom I coefficients of aB will be used.)

• Compute r′0, r
′
1, . . . , r

′
I−1 ∈ {0, 1} as follows. View Right(Tj) − (aB)j + 4w + 1 ∈ Z/q

as an integer between −(q− 1)/2 and (q− 1)/2. Then r′j is the sign bit of this integer:
1 if the integer is negative, otherwise 0.

• Output (r′0, r
′
1, . . . , r

′
I−1) ∈ Inputs.

Theorem 5. Assume that KeyGen() outputs (P, a) ∈ PublicKeys×SecretKeys. Fix r ∈ Inputs.
Assume that Encrypt(r, P) outputs C. Then Decrypt(C, a) = r.

Proof. By definition of KeyGen, P has the form (G,Round(aG)) for some G ∈ R/q. Write
A = Round(aG); then A = aG+ d in R/q for some small d ∈ R.

Write r as (r0, r1, . . . , rI−1). By definition of Encrypt, C has the form (Round(bG), T) for some
b ∈ Short, where Tj = Top((bA)j + rj(q − 1)/2). Write B = Round(bG); then B = bG+ e in
R/q for some small e ∈ R.

By definition of Right, the difference Right(Top(C))−C is in {0, 1, . . . , δ} for each C ∈ Z/q.
In particular, Right(Top(Cj))− Cj ∈ {0, 1, . . . , δ} where Cj = (bA)j + rj(q − 1)/2. Hence

Right(Tj)− (aB)j + 4w + 1

= Right(Top(Cj))− (a(bG+ e))j + 4w + 1

= Right(Top(Cj))− Cj + Cj − ((abG)j + (ae)j) + 4w + 1

= Right(Top(Cj))− Cj + (bA)j + rj(q − 1)/2− ((abG)j + (ae)j) + 4w + 1

= Right(Top(Cj))− Cj + (baG)j + (bd)j + rj(q − 1)/2− ((abG)j + (ae)j) + 4w + 1

= Right(Top(Cj))− Cj + (bd)j − (ae)j + 4w + 1 + rj(q − 1)/2 ∈ Z/q.

All coefficients of the polynomials bd and ae are in [−2w, 2w] by Theorem 2, since d, e are
small and a, b ∈ Short; so (bd)j−(ae)j+4w+1 ∈ {1, . . . , 8w + 1}. Also Right(Top(Cj))−Cj ∈

12

{0, 1, . . . , δ}. Hence Right(Tj)− (aB)j + 4w+ 1 ∈ rj(q−1)/2 +{1, . . . , 8w + δ + 1}. Viewing
each coefficient of Right(Tj) − (aB)j + 4w + 1 as an integer in [−(q − 1)/2, (q − 1)/2] thus
produces

• an integer in [1, 8w + δ + 1] if and only if rj = 0 and

• an integer in [−(q − 1)/2,−(q − 1)/2 + 8w + δ] if and only if rj = 1

because 8w + δ + 1 ≤ (q − 1)/2 by construction. Hence r′j = rj inside Decrypt(C, a), so
Decrypt(C, a) = r.

2.4.5 NTRU LPRime Expand parameter space

NTRU LPRime Expand has the NTRU LPRime Core parameters, plus the following param-
eters: a finite nonempty set Seeds; a deterministic algorithm Generator : Seeds → R/q; and
a deterministic algorithm HashShort : Inputs→ Short.

2.4.6 NTRU LPRime Expand key generation

Define PublicKeys′ = Seeds×Rounded. The following randomized algorithm KeyGen′ outputs
an element of PublicKeys′ × SecretKeys:

• Generate a uniform random S ∈ Seeds.

• Replace the uniform random G ∈ R/q with G = Generator(S) inside KeyGen(), obtain-
ing ((G,Round(aG)), a) ∈ PublicKeys× SecretKeys.

• Output ((S,Round(aG)), a) ∈ PublicKeys′ × SecretKeys.

2.4.7 NTRU LPRime Expand encryption

The following deterministic algorithm Encrypt′ maps Inputs× PublicKeys′ to Ciphertexts:

• Input r ∈ Inputs and (S,A) ∈ Seeds× Rounded.

• Compute G = Generator(S).

• Replace the uniform random b ∈ Short with HashShort(r) inside Encrypt(r, (G,A)),
obtaining c ∈ Ciphertexts.

• Output c.

2.4.8 NTRU LPRime Expand decryption

NTRU LPRime Expand decryption is identical to NTRU LPRime Core decryption.

13

2.4.9 NTRU LPRime parameter space

NTRU LPRime has the NTRU LPRime Expand parameters, plus the following parameters:

• sets SessionKeys,Confirm,PublicKeys′, SecretKeys, Inputs,Ciphertexts of strings, each set
being the set of all strings of a specified length;

• deterministic encoding algorithms PublicKeys′ → PublicKeys′, SecretKeys →
SecretKeys, Inputs→ Inputs, and Ciphertexts→ Ciphertexts;

• deterministic decoding algorithms PublicKeys′ → PublicKeys′, SecretKeys →
SecretKeys, Inputs → Inputs, and Ciphertexts → Ciphertexts that always invert en-
coding;

• a deterministic algorithm HashConfirm : Inputs× PublicKeys′ → Confirm; and

• a deterministic algorithm HashSession : {0, 1} × Inputs × Ciphertexts × Confirm →
SessionKeys.

2.4.10 NTRU LPRime key generation

The following randomized algorithm KeyGen′′ outputs an element of PublicKeys′×SecretKeys′,
where SecretKeys′ = SecretKeys× PublicKeys′ × Inputs:

• Compute (K, k)← KeyGen′().

• Encode K as a string K ∈ PublicKeys′.

• Encode k as a string k ∈ SecretKeys.

• Generate a uniform random ρ ∈ Inputs.

• Output (K, (k,K, ρ)).

Modification after round 1: The secret key now contains the ρ component, which is used
for implicit rejection.

2.4.11 NTRU LPRime encapsulation

The following randomized algorithm Encap, given an element of PublicKeys′, outputs an
element of Ciphertexts′ × SessionKeys, where Ciphertexts′ = Ciphertexts× Confirm:

• Input K ∈ PublicKeys′.

• Decode K, obtaining K ∈ PublicKeys′.

• Generate a uniform random r ∈ Inputs.

• Encode r as a string r ∈ Inputs.

• Compute c = Encrypt′(r,K) ∈ Ciphertexts.

• Encode c as a string c ∈ Ciphertexts.

14

• Compute C = (c,HashConfirm(r,K)) ∈ Ciphertexts× Confirm.

• Output (C,HashSession(1, r, C)).

Modification after round 1: HashConfirm is now given access to the public key K as an
extra input, and HashSession is now given access to the ciphertext C as an extra input.

2.4.12 NTRU LPRime decapsulation

The following deterministic algorithm Decap, given an element of Ciphertexts′ × SecretKeys′,
outputs an element of SessionKeys:

• Input C = (c, γ) ∈ Ciphertexts × Confirm and (k,K, ρ) ∈ SecretKeys × PublicKeys′ ×
Inputs.

• Decode c, obtaining c ∈ Ciphertexts.

• Decode k, obtaining k ∈ SecretKeys.

• Compute r′ = Decrypt(c, k) ∈ Inputs.

• Compute r′, c′, c′, C ′ as in Encap.

• If C ′ = C then output HashSession(1, r, C). Otherwise output HashSession(0, ρ, C).
(The choice between these two outputs is secret information.)

Modification after round 1: Rejection is now implicit instead of explicit.

3 List of parameter sets (part of 2.B.1)

Options expanded for round 2: There are now three sizes of parameter sets. Specifically:

• (p, q) = (761, 4591), with w = 286 for Streamlined NTRU Prime Core and w = 250
for NTRU LPRime Core (with the functions Top and Right defined below). These are
exactly the trapdoor functions from the round-1 submission.

• New smaller size: (p, q) = (653, 4621), with w = 288 for Streamlined NTRU Prime
Core and w = 252 for NTRU LPRime Core.

• New larger size: (p, q) = (857, 5167), with w = 322 for Streamlined NTRU Prime Core
and w = 281 for NTRU LPRime Core.

Each size has one Streamlined NTRU Prime parameter set and one NTRU LPRime param-
eter set, for a total of six parameter sets.

Encodings and hash details modified for round 2: The input to the confirmation hash
now includes (a hash of) the public key. The input to the session-key hash now includes
the ciphertext. Other hash details are modified. The encodings as strings are now more
space-efficient, and are defined in a unified way across sizes.

15

3.1 Shared choices of parameters

The following definitions and parameter choices are shared by all six parameter sets.

Set of session keys. SessionKeys is the set of 32-byte strings.

Set of confirmation strings. Confirm is the set of 32-byte strings.

Hashing. Define Hash(z) as the first 32 bytes of SHA-512(z). Define Hashb for b ∈
{0, 1, . . . , 255} as Hash with the input prefixed by byte b: i.e., Hashb(z) = Hash(b, z).

General-purpose encoding of sequences of integers. We define deterministic algo-
rithms Encode and Decode with the following properties.

Let M = (m0, . . . ,mn−1) and R = (r0, . . . , rn−1) be sequences of integers. Assume that
0 ≤ ri < mi < 214 for each i. Then S = Encode(R,M) is a sequence of bytes, and
Decode(Encode(R,M),M) = R. The length of S depends only on M , not on R. If S ′ is any
sequence of bytes of this length, then Decode(S ′,M) is a sequence of n integers, although
not necessarily in the same range as R.

The definitions of Encode and Decode are formally expressed in the Python language as
Figures 1 and 2 respectively. Encoding works as follows:

• If n = 0 then S is the empty sequence ().

• If n = 1 then S is r0 in little-endian form, with 2 bytes if m0 > 28, or 1 byte if
28 ≥ m0 > 1, or 0 bytes if m0 = 1.

• If n ≥ 2 then S is a prefix followed by Encode(R′,M ′), where R′,M ′ have length
dn/2e. Specifically, each pair ri, ri+1 modulo mi,mi+1 for even i is merged into r =
ri + miri+1 modulo m = mimi+1, and then r,m are reduced to r′,m′ with 0 < r′ <
m′ < 214, producing an entry for R′ and an entry for M ′ respectively. Reduction means
that if m ≥ 214 then r mod 28 is appended to the prefix while r,m are replaced by
br/28c, dm/28e respectively; this is repeated 0, 1, or 2 times to reduce m to the correct
range. If n is odd then the final rn−1,mn−1 are also included in R′,M ′.

We use these algorithms only for sequences M that have at most two values: more precisely,
m0 = · · · = mn−2. Each parameter set involves, in total, only a logarithmic number of
different values. (The computations can be optimized accordingly. The recursion can be
eliminated in favor of iteration.)

Encoding of field elements. View each element of R/q as a polynomial r0 + r1x +
· · · + rp−1x

p−1 with each ri ∈ {−(q − 1)/2, . . . ,−1, 0, 1, . . . , (q − 1)/2}. Add (q − 1)/2 to
each coefficient to obtain a sequence of p elements of {0, 1, . . . , q − 1}. Apply Encode with
M = (q, . . . , q) to obtain a string.

Encoding of rounded field elements. All of our parameters have q ≡ 1 (mod 6),
so Rounded is the set of polynomials r0 + r1x + · · · + rp−1x

p−1 with each ri ∈
{−(q − 1)/2, . . . ,−3, 0, 3, . . . , (q − 1)/2}. Add (q − 1)/2 to each coefficient and divide
by 3 to obtain a sequence of p elements of {0, 1, . . . , (q − 1)/3}. Apply Encode with

16

limit = 16384

def Encode(R,M):

 if len(M) == 0: return []

 S = []

 if len(M) == 1:

 r,m = R[0],M[0]

 while m > 1:

 S += [r%256]

 r,m = r//256,(m+255)//256

 return S

 R2,M2 = [],[]

 for i in range(0,len(M)-1,2):

 m,r = M[i]*M[i+1],R[i]+M[i]*R[i+1]

 while m >= limit:

 S += [r%256]

 r,m = r//256,(m+255)//256

 R2 += [r]

 M2 += [m]

 if len(M)&1:

 R2 += [R[-1]]

 M2 += [M[-1]]

 return S+Encode(R2,M2)

Figure 1: General-purpose encoding of sequences of integers. The lists R and M have the
same length, and 0 ≤ R[i] < M [i] < 214 for each i.

M = ((q − 1)/3 + 1, . . . , (q − 1)/3 + 1) to obtain a string.

Encoding of small ring elements. A small element r = r0 + r1x + · · · + rp−1x
p−1 of R

is encoded as a dp/4e-byte string r as follows. View the polynomial in little-endian form as
a sequence of coefficients of x0, x1, . . . , xp−1. Add 1 to each coefficient, obtaining a sequence
of p elements of {0, 1, 2}. Write each batch of 4 elements in little-endian form in radix 4,
obtaining a byte.

3.2 Shared choices of Streamlined NTRU Prime parameters

The following definitions and parameter choices are shared by the three Streamlined NTRU
Prime parameter sets.

Encoding of public keys. The encoding of public keys is the encoding of field elements.

17

limit = 16384

def Decode(S,M):

 if len(M) == 0: return []

 if len(M) == 1: return [sum(S[i]*256**i for i in range(len(S)))%M[0]]

 k = 0

 bottom,M2 = [],[]

 for i in range(0,len(M)-1,2):

 m,r,t = M[i]*M[i+1],0,1

 while m >= limit:

 r,t,k,m = r+S[k]*t,t*256,k+1,(m+255)//256

 bottom += [(r,t)]

 M2 += [m]

 if len(M)&1:

 M2 += [M[-1]]

 R2 = Decode(S[k:],M2)

 R = []

 for i in range(0,len(M)-1,2):

 r,t = bottom[i//2]

 r += t*R2[i//2]

 R += [r%M[i]]

 R += [(r//M[i])%M[i+1]]

 if len(M)&1:

 R += [R2[-1]]

 return R

Figure 2: General-purpose decoding of sequences of integers. If the lists R and M have the
same length, and 0 ≤ R[i] < M [i] < 214 for each i, then Decode(Encode(R,M),M) = R.

Encoding of secret keys. The f component of a secret key is encoded as a small ring
element. The v = 1/g component of a secret key is encoded as a small ring element.

Encoding of inputs. Inputs is the set of dp/4e-byte strings. The encoding is the encoding
of small field elements. (One can, optionally, compress ρ by replacing it with an RNG seed,
at the expense of running the RNG to regenerate ρ. Another possibility that removes this
expense is to use a short ρ to overwrite Hash3(r) in the definition of HashSession below.)

Encoding of ciphertexts. The encoding of ciphertexts is the encoding of rounded field
elements.

Confirmation hash. HashConfirm(r,K) is defined as Hash2(Hash3(r),Hash4(K)) for each
r ∈ Inputs and each K ∈ PublicKeys.

Key-hash caching. Caching Hash4(K) saves time when K is reused in encapsulation or
decapsulation. We cache Hash4(K) at the end of secret keys.

18

Session-key hash. HashSession(b, y, z) is defined as Hashb(Hash3(y), z) for each b ∈ {0, 1},
each y ∈ Inputs, and each z ∈ Ciphertexts× Confirm.

3.3 Shared choices of NTRU LPRime parameters

The following definitions and parameter choices are shared by the three NTRU LPRime
parameter sets.

Top bits. The parameter τ is defined as 16.

There are two further parameters τ1, τ0 that define the Top function. For each
C ∈ {−(q − 1)/2, . . . , (q − 1)/2}, Top(C) is defined as b(τ1(C + τ0) + 214)/215c. The
parameters τ1, τ0 are chosen so that Top(C) ∈ {0, 1, . . . , 15}. This function from
{−(q − 1)/2, . . . , (q − 1)/2} to {0, 1, . . . , 15} induces a function Top : Z/q → Z/16.

There are also two parameters τ3, τ2 that define the Right function. For each T ∈
{0, 1, . . . , 15}, Right(T) is defined as τ3T − τ2 ∈ Z/q. The parameters τ3, τ2 are chosen
so that each C ∈ {−(q − 1)/2, . . . , (q − 1)/2} satisfies τ3T − τ2 − C ∈ {0, 1, . . . , δ} where
T = b(τ1(C + τ0) + 214)/215c; one can efficiently verify this property by checking each C.
This function from {0, 1, . . . , 15} to Z/q induces a function Right : Z/16→ Z/q.

Expansion. Define Expand(K), where K is a 32-byte string, as the first 4p bytes of AES-
256-CTR output using key K, starting with counter 0.

Set of seeds. Seeds is the set of 32-byte strings.

Mapping seeds to ring elements. For each K ∈ Seeds, Generator(K) ∈ R/q is defined
as follows:

• Compute the 4p-byte string Expand(K).

• View each 4 bytes of the string in little-endian form, obtaining p elements of
{0, 1, . . . , 232 − 1}.
• Reduce each of these elements modulo q, obtaining p elements of {0, 1, . . . , q − 1}.
• Obtain p elements of {−(q − 1)/2, . . . , (q − 1)/2} by subtracting (q − 1)/2 from each

integer.

• View these elements as a polynomial in little-endian form, namely Generator(K).

Number of input bits. I is 256, so Inputs = {0, 1}256.

Encoding of inputs. Inputs is the set of 32-byte strings. An element r = (r0, r1, . . . , r255) ∈
Inputs is encoded as a string r ∈ Inputs in little-endian form: i.e., the first byte of r is
r0 + 2r1 + · · ·+ 128r7, the next byte is r8 + 2r9 + · · ·+ 128r15, etc.

Hashing inputs to short polynomials. For each r ∈ Inputs, HashShort(r) ∈ Short is
defined as follows:

• Compute K = Hash5(r). Here r ∈ Inputs is the encoding of r defined above.

19

• Compute the 4p-byte string Expand(K).

• View each 4 bytes of the string in little-endian form, obtaining p elements of
{0, 1, . . . , 232 − 1}.
• Clear the bottom bit of each of the first w integers; now each of those integers is 0

modulo 2.

• Set the bottom bit, and clear the next bit, of each of the remaining p − w integers;
now each of those integers is 1 modulo 4.

• Sort the integers.

• Reduce each integer modulo 4, and subtract 1, obtaining p elements of {−1, 0, 1}, of
which exactly w are nonzero.

• View these elements as a polynomial in little-endian form, namely HashShort(K).

Encoding of public keys. An element of PublicKeys′ has two components, S ∈ Seeds and
A ∈ Rounded. The S component is a 32-byte string by definition. The A component is
encoded as a rounded field element.

Encoding of secret keys. The encoding of secret keys is the encoding of small ring
elements.

Encoding of ciphertexts. An element of Ciphertexts has two components, B ∈ Rounded
and T ∈ (Z/τ)256. The B component is encoded as a rounded field element. The T com-
ponent is encoded in radix 16 in little-endian form as 128 bytes, with each element of Z/τ
viewed as an element of {0, 1, . . . , 15}: i.e., (T0, T1, . . . , T255) ∈ {0, 1, . . . , 15}256 is encoded
as the bytes (T0 + 16T1, T2 + 16T3, . . . , T254 + 16T255).

Confirmation hash. HashConfirm(r,K) is defined as Hash2(r,Hash4(K)) for each r ∈ Inputs
and each K ∈ PublicKeys′.

Key-hash caching. Caching Hash4(K) saves time when K is reused in encapsulation or
decapsulation. We cache Hash4(K) at the end of secret keys.

Session-key hash. HashSession(b, z) is defined as Hashb(z) for each b ∈ {0, 1} and each
z ∈ Inputs× Ciphertexts× Confirm.

3.4 Parameter set kem/sntrup653

Streamlined NTRU Prime with p = 653, q = 4621, and w = 288.

3.5 Parameter set kem/sntrup761

Streamlined NTRU Prime with p = 761, q = 4591, and w = 286.

20

3.6 Parameter set kem/sntrup857

Streamlined NTRU Prime with p = 857, q = 5167, and w = 322.

3.7 Parameter set kem/ntrulpr653

NTRU LPRime with p = 653, q = 4621, w = 252, δ = 289, τ0 = 2175, τ1 = 113, τ2 = 2031,
τ3 = 290.

3.8 Parameter set kem/ntrulpr761

NTRU LPRime with p = 761, q = 4591, w = 250, δ = 292, τ0 = 2156, τ1 = 114, τ2 = 2007,
τ3 = 287.

3.9 Parameter set kem/ntrulpr857

NTRU LPRime with p = 857, q = 5167, w = 281, δ = 329, τ0 = 2433, τ1 = 101, τ2 = 2265,
τ3 = 324.

4 Design rationale (part of 2.B.1)

There are many different ideal-lattice-based public-key encryption schemes in the literature,
including many versions of NTRU; many Ring-LWE-based cryptosystems; and now Stream-
lined NTRU Prime and NTRU LPRime. These are actually many different points in a
high-dimensional space of possible cryptosystems. We give a unified description of the ad-
vantages and disadvantages of what we see as the most important options in each dimension,
in particular explaining the choices that we made in Streamlined NTRU Prime and NTRU
LPRime. Beware that there are many interactions between options. For example, using
Gaussian errors is incompatible with eliminating decryption failures, because there is always
a small probability of large samples combining with large values. Using truncated Gaussian
errors is compatible with eliminating decryption failures, but requires a much larger modulus
q. Neither of these options is compatible with the simple tight KEM that we use.

4.1 The ring

The choice of cryptosystem includes a choice of a monic degree-p polynomial P ∈ Z[x] and
a choice of a positive integer q. As in Section 2, we abbreviate the ring Z[x]/P as R, and
the ring (Z/q)[x]/P as R/q.

21

Common choices of R/q are as follows:

• “NTRU Classic”: Rings of the form (Z/q)[x]/(xp − 1), where p is a prime and q is a
power of 2, are used in the original NTRU cryptosystem [54].

• “NTRU NTT”: Rings of the form (Z/q)[x]/(xp + 1), where p is a power of 2 and
q ∈ 1 + 2pZ is a prime, are used in typical “Ring-LWE-based” cryptosystems such as
[7].

• “NTRU Prime”: Fields of the form (Z/q)[x]/(xp − x− 1), where p is prime, are used
in this submission.

NTRU Prime uses a prime-degree number field with a large Galois group and an inert
modulus, minimizing the number of ring homomorphisms available to the attacker. As an
analogy, conservative prime-field discrete-logarithm systems also minimize the number of
ring homomorphisms available to the attacker.

We expect the future situation, like the current situation, to be a mix of the following three
scenarios:

• Some lattice-based systems are broken whether or not they have unnecessary homo-
morphisms. As an analogy, some discrete-logarithm systems are broken whether or not
they have unnecessary homomorphisms.

• Some lattice-based systems are unbroken whether or not they have unnecessary homo-
morphisms. As an analogy, some discrete-logarithm systems are unbroken whether or
not they have unnecessary homomorphisms.

• Some lattice-based systems are broken only if they have unnecessary homomorphisms.
As an analogy, some discrete-logarithm systems are broken only if they have unneces-
sary homomorphisms. Eliminating unnecessary homomorphisms rescues these systems,
and removes the need to worry about what attackers can do with these homomor-
phisms.

The current situation is that homomorphisms eliminated by NTRU Prime are used in the
following attack papers: [32], [46], [38], [34], [39], and [15]. See our “NTRU Prime” paper
for further details.

4.2 The public key

The receiver’s public key, which we call h, is an element of R/q.

4.3 Inputs and ciphertexts

In the original NTRU system, ciphertexts are elements of the form m + hr ∈ R/q. Here
h ∈ R/q is the public key as above, and m, r are small elements of R chosen by the sender.

Subsequent systems labeled as “NTRU” have generally extended ciphertexts to include ad-

22

send m+ hr for small m, r and public h in ring R (“NTRU”)

�� �� ��
cyclotomic,

power-of-2 index,
split modulus

(“NTRU NTT”)

��

cyclotomic,
prime index,

power-of-2 modulus
(“NTRU Classic”)

��

large Galois group,
prime degree,
inert modulus

(“NTRU Prime”)

��

��

random m

��

random m

��

random m

round hr to m+ hr
(“Rounded

NTRU Prime”)

��
��

key h = d+ aG
for small a, d,

public G
(“Noisy Product
NTRU NTT”)

��

key h = g/f
for small f, g

(“Noisy Quotient
NTRU Classic”)

��

key h = d+ aG
for small a, d,

public G
(“Rounded

Product
NTRU Prime”)

��

key h = g/f
for small f, g
(“Rounded
Quotient

NTRU Prime”)

��Lyubashevsky–
Peikert–Regev

cryptosystem [68]

original NTRU
cryptosystem [54] “NTRU LPRime”

“Streamlined
NTRU Prime”

ditional information, for various reasons explained below; but these cryptosystems all share
the same core design element, sending m + hr ∈ R/q where m, r are small secrets and h is
public. We suggest systematically using the name “NTRU” to refer to this design element,
and more specific names (e.g., “NTRU Classic” vs. “NTRU Prime”) to refer to other design
elements.

We refer to (m, r) as “input” rather than “plaintext” because in any modern public-key cryp-
tosystem the input is randomized and is separated from the sender’s plaintext by symmetric
primitives such as hash functions. See Section 4.5.

In the original NTRU specification [54], m was allowed to be any element of R having all
coefficients in a standard range. The range was {−1, 0, 1} for all of the suggested parameters,
with q not a multiple of 3, and we focus on this case for simplicity (although we note that
some other lattice-based cryptosystems have taken the smaller range {0, 1}, or sometimes
larger ranges).

23

Current NTRU Classic specifications such as [53] prohibit m that have an unusually small
number of 0’s or 1’s or −1’s. For random m, this prohibition applies with probability
<2−10, and in case of failure the sender can try encoding the plaintext as a new m, but
this is problematic for applications with hard real-time requirements. The reason for this
prohibition is that NTRU Classic gives the attacker an “evaluate at 1” homomorphism
from R/q to Z/q, leaking m(1). The attacker scans many ciphertexts to find an occasional
ciphertext where the value m(1) is particularly far from 0; this value constrains the search
space for the corresponding m by enough bits to raise security concerns. In NTRU Prime,
R/q is a field, so this type of leak cannot occur.

Streamlined NTRU Prime actually uses a different type of ciphertext, which we call a
“rounded ciphertext”. The sender chooses a small r as input and computes hr ∈ R/q.
The sender obtains the ciphertext by rounding each coefficient of hr, viewed as an integer
between −(q−1)/2 and (q−1)/2, to the nearest multiple of 3. This ciphertext can be viewed
as an example of the original ciphertext m+ hr, but with m chosen so that each coefficient
of m+ hr is in a restricted subset of Z/q.

With the original ciphertexts, each coefficient of m + hr leaves 3 possibilities for the cor-
responding coefficients of hr and m. With rounded ciphertexts, each coefficient of m + hr
also leaves 3 possibilities for the corresponding coefficients of hr and m, except that the
boundary cases −(q− 1)/2 and (q− 1)/2 (assuming q ∈ 1 + 3Z) leave only 2 possibilities. In
a pool of 264 rounded ciphertexts, the attacker might find one ciphertext that has 15 of these
boundary cases out of 761 coefficients; these occasional exceptions have very little impact
on known attacks. It would be possible to randomize the choice of multiples of 3 near the
boundaries, but we prefer the simplicity of having the ciphertext determined entirely by r.
It would also be possible to prohibit ciphertexts at the boundaries, but as above we prefer
to avoid restarting the encryption process.

More generally, we say “Rounded NTRU” for any NTRU system in which m is chosen
deterministically by rounding hr to a standard subset of Z/q, and “Noisy NTRU” for the
original version in which m is chosen randomly. Rounded NTRU has two advantages over
Noisy NTRU. First, it reduces the space required to transmit m+ hr. Second, the fact that
m is determined by r simplifies protection against chosen-ciphertext attacks; see Section 4.5.

[74, Section 4] used an intermediate non-deterministic possibility to provide some space
reduction for a public-key cryptosystem: first choose m randomly, and then round m + hr,
obtaining m′ + hr. The idea of rounded hr as a deterministic substitute for noisy m + hr
was introduced in [14] in the context of a symmetric-key construction, was used in [9] to
construct another public-key encryption system, and was further studied in [28] and [8]. All
of the public-key cryptosystems in these papers have ciphertexts longer than Noisy NTRU,
but applying the same idea to Noisy NTRU produces Rounded NTRU, which has shorter
ciphertexts.

24

4.4 Key generation and decryption

In the original NTRU cryptosystem, the public key h has the form 3g/f in R/q, where f
and g are secret. Decryption computes fc = fm+ 3gr, reduces modulo 3 to obtain fm, and
multiplies by 1/f to obtain m.

Streamlined NTRU Prime changes the position of the 3, taking h as g/(3f) rather than 3g/f .
Decryption computes 3fc = 3fm+gr, reduces modulo 3 to obtain gr, and multiplies by 1/g
to obtain r. This change lets us compute (m, r) by first computing r and then multiplying
by h, whereas otherwise we would first compute m and then multiply by 1/h. One advantage
is that we skip computing 1/h; another advantage is that we need less space for storing a
key pair. This 1/h issue does not arise for NTRU variants that compute r as a hash of m,
but those variants are incompatible with rounded ciphertexts, as discussed in Section 4.5.

More generally, we say “Quotient NTRU” for NTRU with h computed as a ratio of two
secret small polynomials. An alternative is what we call “Product NTRU”, namely NTRU
with h of the form d + aG, where a and d are secret small polynomials. Here G ∈ R/q is
public, like h, but unlike h it does not need a hidden multiplicative structure: it can be,
for example, a standard chosen randomly by a trusted authority, or output of a long hash
function applied to a standard randomly chosen seed, or (as proposed in [7]) output of a long
hash function applied to a per-receiver seed supplied along with h as part of the public key.

Product NTRU does not allow the same decryption procedure as Quotient NTRU. The first
Product NTRU system, introduced by Lyubashevsky, Peikert, and Regev in [68] (originally
in talk slides in 2010), sends e + rG as additional ciphertext along with m + hr + M ,
where, as before, m and r are small polynomials, e is another small polynomial, and M
is a polynomial consisting of solely 0 or bq/2c in each position. The receiver computes
(m + hr + M)− a(e + rG) = M + m + dr − ae, and rounds to 0 or bq/2c in each position,
obtaining M . Note that m+ dr − ae is small, since all of m, d, r, a, e are small.

The ciphertext size here, two elements of R/q, can be improved in various ways. One can
replace hr with fewer coefficients, for example by summing batches of two or three coefficients
[80], before adding M and m. Rounded Product NTRU rounds hr+M to obtain m+hr+M ,
rounds rG to obtain e+ rG, and (to similarly reduce key size) rounds aG to obtain d+ aG.
Decryption continues to work even if m+ hr +M is compressed to two bits per coefficient.

A disadvantage of Product NTRU is that r is used twice, exposing approximations to both rG
and hr. This complicates security analysis compared to simply exposing an approximation
to hr. State-of-the-art attacks against Ring-LWE, which reveals approximations to any
number of random public multiples of r, are significantly faster for many multiples than for
one multiple. Perhaps this indicates a broader weakness, in which each extra multiple hurts
security.

Quotient NTRU has an analogous disadvantage: if one moves far enough in the parameter
space [60] then state-of-the-art attacks distinguish g/f from random more efficiently than
they distinguish m + hr from random. Perhaps this indicates a broader weakness. On the
other hand, if one moves far enough in another direction in the parameter space [92], then

25

g/f has a security proof.

We find both of these issues worrisome: it is not at all clear which of Product NTRU and
Quotient NTRU is a safer option.1 We see no way to simultaneously avoid both types of
complications. We have opted to present details of Streamlined NTRU Prime, an example
of Quotient NTRU Prime; and of NTRU LPRime, an example of Product NTRU Prime.

If exposing approximations to two multiples of r damages the security of Product NTRU,
perhaps exposing fewer bits does less damage. The compression techniques mentioned above,
such as replacing m + hr + M with fewer coefficients and releasing only a few top bits of
each coefficient, naturally expose fewer bits than uncompressed ciphertexts. NTRU LPRime
releases a few top bits of each of the bottom coefficients of m+ hr +M , enough coefficients
to communicate a hard-to-guess input M .

The Quotient NTRU literature, except for the earliest papers, takes f of the form 1 + 3F ,
where F is small. This eliminates the multiplication by the inverse of f modulo 3. In
Streamlined NTRU Prime we have chosen to skip this speedup for two reasons. First, in
the long run we expect cryptography to be implemented in hardware, where a multiplication
in R/3 is far less expensive than a multiplication in R/q. Second, this speedup requires
noticeably larger keys and ciphertexts for the same security level, and this is important for
many applications, while very few applications will notice the CPU time for Streamlined
NTRU Prime.

4.5 Padding, KEMs, and the choice of q

In Streamlined NTRU Prime and NTRU LPRime we use the modern “KEM+DEM” ap-
proach introduced by Shoup; see [89]. This approach is much nicer for implementors than
previous approaches to public-key encryption. For readers unfamiliar with this approach, we
briefly review the analogous options for RSA encryption.

RSA maps an input m to a ciphertext me mod n, where (n, e) is the receiver’s public key.
When RSA was first introduced, its input m was described as the sender’s plaintext. This
was broken in reasonable attack models, leading to the development of various schemes to
build m as some combination of fixed padding, random padding, and a short plaintext;
typically this short plaintext is used as a shared secret key. This turned out to be quite
difficult to get right, both in theory (see, e.g., [90]) and in practice (see, e.g., [71]), although
it does seem possible to protect against arbitrary chosen-ciphertext attacks by building m
in a sufficiently convoluted way.

The “KEM+DEM” approach, specifically Shoup’s “RSA-KEM” in [89] (also called “Simple

1Peikert claimed in [75], modulo terminology, that Product NTRU is “at least as hard” to break as
Quotient NTRU (and “likely strictly harder”). This claim ignores the possibility of attacks against the reuse
of r in Product NTRU. There are no theorems justifying Peikert’s claim, and we are not aware of an argument
that eliminating this reuse is less important than eliminating the g/f structure. For comparison, switching
from NTRU NTT and NTRU Classic to NTRU Prime eliminates structure used in some state-of-the-art
attacks without providing new structure used in other attacks.

26

RSA”), is much easier:

• Choose a uniform random integer m modulo n. This step does not even look at the
plaintext.

• To obtain a shared secret key, simply apply a cryptographic hash function to m.

• Encrypt and authenticate the sender’s plaintext using this shared key.

Any attempt to modify m, or the plaintext, will be caught by the authenticator.

“KEM” means “key encapsulation mechanism”: me mod n is an “encapsulation” of the
shared secret key H(m). “DEM” means “data encapsulation mechanism”, referring to the
encryption and authentication using this shared secret key. Authenticated ciphers are nor-
mally designed to be secure for many messages, so H(m) can be reused to protect further
messages from the sender to the receiver, or from the receiver back to the sender. It is also
easy to combine KEMs, for example combining a pre-quantum KEM with a post-quantum
KEM, by simply hashing the shared secrets together.

When NTRU was introduced, its input (m, r) was described as a sender plaintextm combined
with a random r. This is obviously not secure against chosen-ciphertext attacks. Subsequent
NTRU papers introduced various mechanisms to build (m, r) as increasingly convoluted
combinations of fixed padding, random padding, and a short plaintext.

It is easy to guess that KEMs simplify NTRU, the same way that KEMs simplify RSA; we
are certainly not the first to suggest this. However, all the NTRU-based KEMs we have
found in the literature (e.g., [91] and [84]) construct the NTRU input (m, r) by hashing a
shorter input and verifying this hash during decapsulation; typically r is produced as a hash
of m. These KEMs implicitly assume that m and r can be chosen independently, whereas
rounded ciphertexts (see Section 4.3) have r as the sole input. It is also not clear that
generic-hash chosen-ciphertext attacks against these KEMs are as difficult as inverting the
NTRU map from input to ciphertext: the security theorems are quite loose.

We instead follow a simple generic KEM construction introduced in the earlier paper [42,
Section 6] by Dent, backed by a tight security reduction [42, Theorem 8] saying that generic-
hash chosen-ciphertext attacks are as difficult as inverting the underlying function:

• Like RSA-KEM, this construction hashes the input, in our case r, to obtain the session
key.

• Decapsulation verifies that the ciphertext is the correct ciphertext for this input, pre-
venting per-input ciphertext malleability.

• The KEM uses additional hash output for key confirmation, making clear that a ci-
phertext cannot be generated except by someone who knows the corresponding input.

Key confirmation might be overkill from a security perspective, since a random session
key will also produce an authentication failure; but key confirmation allows the KEM to be
audited without regard to the authentication mechanism, and adds only 3% to our ciphertext
size.

27

Dent’s security analysis assumes that decryption works for all inputs. We achieve this in
Streamlined NTRU Prime by requiring q ≥ 16w + 1. Recall that decryption sees 3fm + gr
in R/q and tries to deduce 3fm + gr in R; the condition q ≥ 16w + 1 guarantees that
this works, since each coefficient of 3fm + gr in R is between −(q − 1)/2 and (q − 1)/2 by
Theorem 3. Taking different shapes of m, r, f, g, or changing the polynomial P = xp−x− 1,
would change the bound 16w+ 1; for example, replacing g by 1 + 3G would change 16w+ 1
into 24w + 3.

Similarly, NTRU LPRime takes q ≥ 16w+2δ+3 to avoid decryption failures. Sending along
merely top bits of m+ hr+M means that there is an additional error, producing a slightly
worse bound than in the Streamlined NTRU Prime case. Another difference in details is
that decryption reconstructs only M , not m; NTRU LPRime chooses r deterministically2 as
a hash of M .

In lattice-based cryptography it is standard to take somewhat smaller values of q. The idea
is that coefficients in 3fm+ gr are produced as sums of many +1 and −1 terms, and these
terms usually cancel, rather than conspiring to produce the maximum conceivable coefficient.
However, this idea led to attacks that exploited occasional decryption failures; see [56] and,
for an analogous attack on code-based cryptography using QC-MDPC codes, [50]. It is
common today to choose q so that decryption failures will occur with, e.g., probability 2−80;
but this does not meet Dent’s assumption that decryption always works. This nonzero
failure rate appears to account for most of the complications in the literature on NTRU-
based KEMs. We prefer to guarantee that decryption works, making the security analysis
simpler and more robust.

4.6 The shape of small polynomials

As noted in Section 4.3, the coefficients of m are chosen from the limited range {−1, 0, 1}.
The NTRU literature [54, 58, 52, 53] generally puts the same limit on the coefficients of r, g,
and f , except that if f is chosen with the shape 1 + 3F (see Section 4.4) then the literature
puts this limit on the coefficients of F . Sometimes these “ternary polynomials” are further
restricted to “binary polynomials”, excluding coefficient −1.

The NTRU literature further restricts the Hamming weight of r, g, and f . Specifically, a
cryptosystem parameter is introduced to specify the number of 1’s and −1’s. For example,
there is a parameter t (typically called “d” in NTRU papers) so that r has exactly t coef-
ficients equal to 1, exactly t coefficients equal to −1, and the remaining p − 2t coefficients
equal to 0. These restrictions allow decryption for smaller values of q (see Section 4.5),
saving space and time. Beware, however, that if t is too small then there are attacks; see
our security analysis in Section 6.

2This requires another layer of security analysis beyond Dent’s security analysis. The core question is
whether it is hard to recover a random M from ciphertext and public key, when r is chosen randomly. The
next question, the extra layer, is whether it is hard to recover a random M from ciphertext and public key,
when r is chosen as a hash of M . The third question, addressed by Dent’s security analysis, is whether the
KEM is hard to break.

28

In Streamlined NTRU Prime we keep the requirement that r have Hamming weight w = 2t,
and keep the requirement that these w nonzero coefficients are all in {−1, 1}, but we drop
the requirement of an equal split between −1 and 1. This allows somewhat more choices of r.
The same comments apply to f . Similarly, we require g to have all coefficients in {−1, 0, 1}
but the distribution is otherwise unconstrained. We also require that f and g be invertible
in R/q, which simply means nonzero given that P (x) is irreducible for NTRU Prime, and
that g be invertible in R/3.

These changes would affect the conventional NTRU decryption procedure: they expand
the typical size of coefficients of fm and gr, forcing larger choices of q to avoid noticeable
decryption failures. But we instead choose q to avoid all decryption failures (see Section 4.5),
and these changes do not expand our bound on the size of the coefficients of fm and gr.

In NTRU LPRime we similarly choose small weight-w polynomials with coefficients in
{−1, 0, 1} without restricting the distribution of −1 and 1 beyond the weight.

Elsewhere in the literature on lattice-based cryptography one can find larger coefficients:
consider, e.g., the quinary polynomials in [44], and the even wider range in [7]. In [92],
the coefficients of f and g are sampled from a very wide discrete Gaussian distribution,
allowing a proof regarding the distribution of g/f . However, this appears to produce worse
security for any given key size. Specifically, there are no known attack strategies blocked
by a Gaussian distribution, while the very wide distribution forces q to be very large to
enable decryption (see Section 4.5), producing a much larger key size (and ciphertext size)
for the same security level. Furthermore, wide Gaussian distributions are practically always
implemented with variable-time algorithms, creating security problems, as illustrated by the
successful cache-timing attacks in [31] and [77].

4.7 Modifications for round 2

The design rationale stated above is identical (modulo reference numbers) to the design
rationale stated in our round-1 submission. We are using the same trapdoor functions in
round 2, for the same reasons. We have modified the surrounding CCA conversions to add
extra layers of defense, as explained below.

Analyzing arguments for other trapdoor functions. As a baseline requirement, we
consider only small lattice-based systems. We therefore disregard arguments that systems
outside this scope, such as Classic McEliece, have lower risk. (This does not mean that we
dispute these arguments.)

Within small lattice-based systems, we prioritize minimizing the difficulty of security review.
Quantitative improvements in the exact performance-vs.-security tradeoffs—aiming for even
smaller lattice-based systems—are a lower priority.

There is, for example, a reasonable argument that allowing occasional decryption failures
improves the quantitative tradeoffs between speed and security against known attacks.3

3It is not clear how much improvement is possible. Some systems try to maximize the improvement

29

However, it is clear that allowing decryption failures creates a large additional problem for
the security reviewer.

Similarly, it has always been clear that NTRU Classic and NTRU NTT allow some speedups
that are not available for NTRU Prime. In [21] we wrote “We are not saying that the NTRU
Prime rings have zero cost.” However, NTRU Classic and NTRU NTT force the security
reviewer to analyze the impact of unnecessary homomorphisms provided to the attacker.

When we encounter claims that changing our choices could reduce security risks, we analyze
the technical merits of the claims and what the change would mean for security reviewers.
For example, there is an argument that unnecessary homomorphisms have a longer history in
lattice-based cryptography than NTRU Prime does, and are therefore less risky. A closer look
shows, however, a recent history of unnecessary homomorphisms being used in increasingly
sophisticated attacks that have broken various lattice-based systems. The security reviewer
is forced to understand these attacks, and to ask how far the attacks can be pushed.

As another example, there is a claim that the deterministic choice of noise in Rounded NTRU
could be exploited in attacks against one-wayness. One can, however, just as easily claim
that the pseudorandom choice of noise in Noisy NTRU could be exploited in attacks against
one-wayness. Looking beyond one-wayness, and considering a complete KEM designed for
IND-CCA2 security, shows that starting from a deterministic trapdoor function eliminates
some difficult questions for security reviewers.4 Making Noisy NTRU deterministic is more
complicated than simply using Rounded Quotient NTRU, which is naturally deterministic.

The most difficult question we have faced is the choice between Quotient NTRU and Product
NTRU. The underlying problems are similar (see Section 6.2), but the differences could
mean that Quotient NTRU is much easier to break, or that Product NTRU is much easier
to break. Known attacks against extreme problems provide weak evidence in both directions,
and security reviewers need to consider how far these attacks can be pushed. A sufficiently
severe weakness in Quotient NTRU would outweigh the advantages of being deterministic.

There is a specific argument that Quotient NTRU provides an extra attack tool that is useful
for very large q—a lattice with many independent short vectors—while Product NTRU does
not. If this argument were correct then it would mean that Quotient NTRU raises an
unnecessary question for security reviewers: namely, can the same attack tool be pushed to
smaller values of q relevant to small lattice-based systems?

However, the argument is not correct. Product NTRU provides the same attack tool; see
Section 6.3. A security reviewer has to ask how far this attack tool can be pushed against
Quotient NTRU, but also has to ask how far this attack tool can be pushed against Product
NTRU. The incorrect statement that this attack tool does not exist against Product NTRU
has led to a lack of analysis, which is even more worrisome for the security reviewer than

by using (1) error correction and (2) choices of failure probabilities that are too large for proofs to be
meaningfully applicable, but this also maximizes the concerns for the security reviewer.

4Derandomizing a randomized PKE is conceptually straightforward but does not have a tight security
proof starting from one-wayness. Can the attacker exploit this gap? There are tighter proofs starting from
indistinguishability assumptions, but how closely have cryptanalysts studied those asumptions?

30

the analysis that has been performed against Quotient NTRU.

In the long run, it would be useful to select one of these two options, so that security
reviewers can stop worrying about potential weaknesses in the other option. However, the
current literature does not seem to provide an adequate basis for making this selection. We
provide both options.

CCA conversions. We now hash additional inputs into the session key, for reasons ex-
plained in Section 7. Concretely, the confirmation hash now includes the public key, and the
session-key hash now includes the ciphertext (which in turn includes the confirmation hash).

We now use “implicit rejection” as an extra layer of defense against chosen-ciphertext attacks.
Implicit rejection means that decapsulation of an invalid ciphertext returns a pseudorandom
function of the ciphertext rather than returning failure. This makes it difficult for attackers
to see which ciphertexts are valid.

If a perfectly correct deterministic PKE is one-way then implicit rejection (with or with-
out confirmation) tightly produces ROM IND-CCA2 security; for a detailed proof see [25].
Beyond this, [83] claims QROM IND-CCA2 security, but the proof starts from a ciphertext-
unrecognizability assumption that, compared to one-wayness, has received much less crypt-
analytic attention. A tight ROM proof of this assumption appears in [83] given one-wayness
and a confirmation hash; but QROM attacks could be faster than ROM attacks, and other
attacks could be faster than QROM attacks.

One can argue that, given implicit rejection, current proofs do not show a clear advantage of
also using confirmation, so one should eliminate confirmation. However, removing defenses
purely on the basis of security proofs in limited models is a dangerous practice, as illustrated
by [70]. Even if, hypothetically, QROM IND-CCA2 is tightly proven from a well-studied
one-wayness assumption, security reviewers will be forced to consider IND-CCA2 attacks
beyond QROM IND-CCA2 attacks. Confirmation is helpful in this analysis, since it prevents
attackers from generating valid modifications to ciphertexts except by already knowing the
corresponding inputs. Also, compared to implicit rejection, confirmation stops attacks at
an earlier phase of the decapsulation process, as noted in [25]; there is a plausible argument
that this reduces the cost of side-channel protection.

Underlying hash function. We have decided to use only 256 bits of SHA-512 output. To
generate 512 bits of output—in particular, a confirmation and a session key—we hash twice
with different inputs rather than using a single hash. This is convenient in the context of
implicit rejection; simplifies the inclusion of extra inputs such as the public key; and makes
it very easy to switch to another 256-bit hash function if desired.

Encodings of sequences of integers. There are three standard strategies to encode an
integer r0 modulo m0, an integer r1 modulo m1, etc. as a sequence of bytes.

The first strategy is to simply output a byte. Specifically, if mi is divisible by 256, encode
ri modulo mi as the byte ri mod 256 along with an encoding of bri/256c modulo mi/256.

The second strategy is to increase mi to, e.g., m′i = 256dmi/256e: encode ri modulo mi by
encoding ri modulo m′i. This extends the applicability of the first strategy to arbitrary mod-

31

secret key public key ciphertext total
1518 994 897 1891 sntrup653

1125 897 1025 1922 ntrulpr653

1763 1158 1039 2197 sntrup761

1294 1039 1167 2206 ntrulpr761

1238 1047 1175 2222 ntrulpr4591761 (round 1)
1600 1218 1047 2265 sntrup4591761 (round 1)
1463 1184 1312 2496 ntrulpr857

1999 1322 1184 2506 sntrup857

Table 1: Bytes for various objects. Sorted by “total”, the total of public-key bytes and
ciphertext bytes. The trapdoor functions for sntrup761 and ntrulpr761 are identical to
the trapdoor functions for round-1 sntrup4591761 and ntrulpr4591761 but the encodings
are now more efficient.

uli, but it loses some space efficiency for the unused encodings of {mi,mi + 1, . . . ,m′i − 1}.
As an extreme case, a bit is encoded as a byte. The inefficiency disappears as mi grows.

An alternative to the second strategy, in contexts where there should not be any un-
used strings (see [23]), is to decrease mi to 256bmi/256c, rejecting any input where
ri ≥ 256bmi/256c. The rejection probability is 1 if mi < 256 but becomes acceptably
small if mi is large enough.

The third strategy is to combine two integers into one: e.g., encode r0 modulo m0 and r1

modulo m1 by encoding r0 +m0r1 modulo m0m1. This reduces the inefficiency of the second
strategy, at the expense of working with larger integers.

There are several ways to evaluate the merit of a combination of these strategies. Compared
to the combination used in our round-1 submission, our new Encode function has similar
simplicity, much more generality, better space-efficiency, typically less arithmetic (systemat-
ically fitting products comfortably below 32 bits and other computations comfortably below
16 bits), similar parallelizability, and better vectorizability. For comparison, a conventional
“range encoder” has the same generality and space-efficiency but works from left to right
and is not parallelizable.

5 Detailed performance analysis (2.B.2)

Expanded and updated for round 2.

5.1 Space

See Table 1.

32

5.2 Time

Description of platform. The following measurements were collected on a computer
named titan0. The CPU on titan0 is an Intel Xeon E3-1275 v3 (Haswell) running at 3.5
GHz. Benchmarks used one core of the CPU. Turbo Boost is disabled. titan0 has 32GB of
RAM and runs Ubuntu 16.04; it ran Ubuntu 14.04 when we collected benchmarks for round
1.

NIST says that the “NIST PQC Reference Platform” is “an Intel x64 running Windows
or Linux and supporting the GCC compiler.” titan0 is an Intel x64 running Linux and
supporting the GCC compiler. Beware, however, that different Intel CPUs have different
cycle counts.

Measurements. The official supercop-20190110 measurements report the following quar-
tile/median/quartile cycle counts on titan0:

• 934376/940852/969872 for sntrup4591761 key generation.

• 44672/44788/44956 for sntrup4591761 encapsulation.

• 93452/93676/93856 for sntrup4591761 decapsulation.

• 44796/44948/45140 for ntrulpr4591761 key generation.

• 80904/81144/81548 for ntrulpr4591761 encapsulation.

• 113448/113708/114012 for ntrulpr4591761 decapsulation.

For comparison, the speeds reported in the round-1 submission were, e.g., 59456 cycles
for sntrup4591761 encapsulation and more than 6 million cycles for sntrup4591761 key
generation. The speedups in sntrup4591761 key generation came primarily from speedups
in constant-time inversion; see [26]. The other speedups came primarily from speedups in
constant-time sorting; see [18].

Estimates for round 2. Formally, the above round-1 timings are our current estimates
of round-2 timings on the NIST PQC Reference Platform. We expect a closer look to show
the following effects: moving from 761 to 857 loses time; moving from 761 to 653 saves time;
extra hashing loses time; new multiplication techniques save time.

5.3 Does key-generation time matter?

If a key is used to decapsulate N ciphertexts then the total receiver time is 1 key generation
plus N decapsulations. The percentage of time spent on key generation disappears as N
increases. We review three arguments that key-generation time is nevertheless important.

The first argument is that RSA key generation is so slow that typical sizes of N often do not
compensate; users often limit RSA key sizes specifically to limit key-generation costs. This
argument has no obvious applicability to systems with much faster key generation, such as
Streamlined NTRU Prime and NTRU LPRime.

33

The second argument is that many lattice-based cryptosystems do not resist chosen-
ciphertext attacks, so they have to generate a new key for every ciphertext, so their key-
generation time is important. In other words, these systems require N to be 1. This argu-
ment applies to, e.g., BCNS [30], the original version of New Hope [7], the original version
of Frodo [29], and HILA5 [82]. However, Streamlined NTRU Prime and NTRU LPRime are
designed for IND-CCA2 security. With an IND-CCA2 system, it is safe to generate a key
once and use the key any number of times.

The third argument is that N must be 1 for forward secrecy. This argument is incorrect.
Forward secrecy requires keys to be erased quickly, but “quickly” is a time limit. Generating
a new key for every ciphertext is insufficient (see [66]) and unnecessary. A typical quad-core
3GHz server generating a new short-term sntrup4591761 key every 10 seconds is using under
1/100000 of its CPU time on key generation with our current software; this is a negligible
cost, no matter what N is.

A user who (for some reason) wants to generate many Streamlined NTRU Prime keys more
quickly than this can use Montgomery’s trick to batch the inversions. Montgomery’s trick
replaces (e.g.) 1000 inversions with 2997 multiplications and just 1 inversion.

5.4 Do encapsulation time and decapsulation time matter?

Our decision to use fixed-weight vectors instead of variable-weight vectors improves the quan-
titative tradeoff between space and security against known attacks, but the same decision
costs extra time for generating those vectors. Our decision to use a small f in Streamlined
NTRU Prime instead of f = 1 + 3F improves the same tradeoff, but costs extra time for a
division by f modulo 3. These decisions are based on a broader assessment that, for typical
lattice-based KEMs, space is a much more important cost factor than time.

One way to put space and time on the same scale, as in [21, full version, footnote 5] and [19],
is to consider a quad-core 3GHz CPU handling a 100Mbps Internet connection. In 1 millisec-
ond, each core runs 3 million cycles, so the 4 cores run a total of 12 million cycles—enough
time to decapsulate about 120 sntrup4591761 ciphertexts. In the same 1 millisecond, the
Internet connection transmits only 12500 bytes—only about 12 sntrup4591761 ciphertexts.

This scenario suggests that each cycle used in decapsulation is 1000× less expensive than
each byte used in a ciphertext: for example, saving 20 bytes is worth 20000 cycles. The exact
ratio changes if one varies the CPU speed and the network speed. It would be useful for the
community to agree upon a spectrum of data points regarding the costs of communication
and the costs of computation in various environments.

5.5 How parameters affect performance

Streamlined NTRU Prime public keys: An element of the ring R/q is represented as slightly
more than p log256 q bytes.

34

Streamlined NTRU Prime ciphertexts, NTRU LPRime public keys, NTRU LPRime cipher-
texts: The main space in each object is a rounded element of R/q, which is represented as
slightly more than p log256((q + 2)/3) bytes. Rounding thus saves approximately 0.2p bytes.

NTRU LPRime ciphertexts also use 128 bytes for Top output. These bytes encode I = 256
quantities, each quantity having 4 bits. Reducing the I parameter to 192 would save 32
bytes. It is also possible to use (e.g.) only 3 bits in each quantity, but then δ needs to be
larger (about q/8), so w needs to be smaller (at most about 3q/64).

There are 32 extra bytes in each ciphertext for confirmation; the length is defined by the
Confirm parameter. There are 32 extra bytes in each NTRU LPRime public key for a seed;
the length is defined by the Seeds parameter.

Regarding time: The asymptotic number of bit operations for multiplication in R/q is
essentially linear in p log2 q, the number of bits in a ring element: one can multiply in R/q
by multiplying integers with (p log2 q)

1+o(1) bits, and multiplying n-bit integers takes n1+o(1)

bit operations by standard FFT-based techniques. Accounting for the real cost of memory
increases the asymptotic cost exponent from 1 to 1.5; see Section 6.6. The asymptotic
number of bit operations for inversion is also essentially linear in p log2 q, but inversion is
more difficult to parallelize than multiplication. These asymptotics are not a substitute for
concrete cost analyses.

6 Analysis of known attacks (2.B.5)

Expanded and updated for round 2.

This section summarizes the known cryptanalytic attacks on small lattice-based encryption
systems, including Streamlined NTRU Prime and NTRU LPRime. This section also provides
estimates of the complexity of these attacks. See Section 7 for applications to parameter
selection.

6.1 Warnings

To assist security reviewers, this section points out various ways that analyses from the
literature are, or could be, overestimating the cost of known attacks. Sometimes the
claimed costs are above the actual attack costs. Sometimes the attacks that are analyzed
are not the fastest known attacks.

This section also points out various ways that analyses are, or could be, underestimating
the cost of attacks. Sometimes the claimed costs are below the actual attack costs. Some-
times the attacks that are analyzed are speculative improvements, incorrectly conflating two
separate topics: (1) analyses of known attacks; (2) analyses of risks of advances in attacks.

Overestimates create an obvious risk: a system that was assessed to have an acceptable
security level, on the basis of overestimates, might turn out to have an unacceptable security

35

level, perhaps even a breakable security level. The risk is higher when the overestimates are
quantitatively larger. The risk is also higher when systems aim for low security levels.

Underestimates create risks that are less obvious. The following quote from [24, full version,
Appendix B.1.2] explains the danger of underestimates:

The more-conservative-is-better fallacy. One might also argue that . . . un-
derestimating the cost of an attack is perfectly safe, since it simply leads users
to choose larger parameters.

In fact, “conservative” underestimates can cause users to lose security. There are
three important effects ignored in the “more conservative is better” argument:
first, users are subject to cost constraints, and cannot simply choose larger pa-
rameters; second, users can choose different systems, and in fact take advantage
of this flexibility with the goal of maximizing security subject to the cost con-
straints; third, underestimates in general vary from one system to another, and
in particular the gaps considered in this paper vary from one system to another.

As one of many examples in lattice-based cryptography, consider Schanck’s recent analy-
sis [85] of NTRU parameters. Schanck uses two different security-estimation mechanisms,
producing roughly a 50% difference in the size required for each security level but also pro-
ducing different recommendations regarding the best error fraction to choose inside system
designs. Specifically, Schanck states that “a small weight parameter can be detrimental to
the size vs. security trade-off” but that this is not clearly shown by the “Core-SVP” estimate.
Below we review various reasons to think that “Core-SVP” is an underestimate, and that
this underestimate has the effect of understating the influence of weight on security.

6.2 Attack problems

Consider the following three different problems. Each problem is to find a small s ∈ R of
weight w, but the problems vary in the information provided about s:

• Problem 1: We are given A ∈ R/q such that As+ e = 0 for some small e ∈ R.

• Problem 2: We are given A ∈ R/q and given As+ e for some small e ∈ R.

• Problem 3: We are given A1, A2 ∈ R/q and given A1s + e1, A2s + e2 for some small
e1, e2 ∈ R.

A solution to Problem 2 for all (s, e, A) implies a solution to Problem 3 for all
(s, e1, A1, e2, A2): simply forget e2, A2. It also implies a solution to Problem 1 for all (s, e)
where e is a multiple of s, and in particular a solution to Problem 1 whenever s is invertible
in R/q. A solution to Problem 2 for uniform random (s, e, A) implies a solution to Problem
3 for uniform random (s, e1, A1, e2, A2). On the other hand, there is no proof known that
a solution to Problem 2 for uniform random (s, e, A) implies a solution to Problem 1 for
uniform random (s, e).

36

One can see these problems, for uniform random inputs, as models of attacks on Quotient
NTRU (e.g., Streamlined NTRU Prime) and Product NTRU (e.g., NTRU LPRime):

• Problem 1 models the problem of finding a secret key from a public key in Quotient
NTRU. The decisional version of Problem 1 models the problem of distinguishing a
public key from uniform.

• Problem 2 models the problem of finding a plaintext in Quotient NTRU from a public
key and a ciphertext. One can reduce to the uniform-A case by assuming that public
keys are indistinguishable from uniform.

• Problem 2 also models the problem of finding a secret key from a public key in Product
NTRU. The decisional version of Problem 2 models the problem of distinguishing a
public key from uniform.

• Problem 3 models the problem of finding a plaintext in Product NTRU from a public
key and a ciphertext (although normally e2 has a much larger range than e1 in this set-
ting, perhaps making Problem 3 more difficult than it would be for smaller e2). Again
one can reduce to the uniform case by assuming that public keys are indistinguishable
from uniform.

There are various reasons that these models could be underestimating or overestimating
security. For example:

• Considering the decisional versions of Problems 1 and 2 (so as to decompose attack
analyses into key attacks and ciphertext attacks) could be underestimating security. On
the other hand, considering only the search problems could be overestimating security:
an attacker could find a secret key short enough to decrypt ciphertexts without finding
something as short as the original secret key.

• Some inputs in NTRU LPRime are actually generated as hash outputs. All known
proofs from one-wayness (1) require modeling the hash as a random oracle and (2)
have a large looseness factor. Similar comments apply to many other Product NTRU
cryptosystems in the literature.

• The A in NTRU LPRime is pseudorandom output from a public seed. Here the proofs
are even less satisfactory.

• Rounded NTRU (as in Streamlined NTRU Prime and NTRU LPRime) chooses the
error e deterministically through rounding. As noted in Section 4.3, the deterministic
choice leaks information at the edges of the q interval. An analysis that ignores this
effect is overestimating security, although our calculations indicate that this is a small
effect.

• Noisy NTRU chooses e pseudorandomly. Compared to rounding, this might make s
harder to find, but it might also make s easier to find. Known attacks do not support
conclusions either way. Known reductions between Ring-LWE and Ring-LWR are too
weak to support conclusions either way.

As noted earlier, we are concerned about the possibility that Problem 1 could be weaker
than Problem 2, but we are also concerned about the possibility that Problem 3 could be

37

weaker than Problem 2. We analyze known attacks against all three problems.

Historically, both Problem 1 and Problem 2 were already studied in the earliest NTRU
papers, but attacks have improved dramatically since then and are still a moving target. We
plan to periodically issue updated attack analyses to reflect the progress of research.

6.3 Lattice perspectives on the attack problems

One can view each of the search problems stated above as the problem of finding a short
nonzero solution to a homogeneous system of equations over R/q, if “short” is given an
appropriate definition in each line:

• Problem 1: Given A ∈ R/q, find a short nonzero solution (s, e) ∈ R2 to As+ e = 0.

• Problem 2: Given A, b ∈ R/q, find a short nonzero solution (s, t, e) ∈ R3 to As+e = bt.
(By hypothesis there is a solution of the form (s, 1, e).)

• Problem 3: Given A1, b1, A2, b2 ∈ R/q, find a short nonzero solution (s, t1, t2, e1, e2) ∈
R5 to the system of equations A1s+ e1 = b1t1, A2s+ e2 = b2t2.

Each solution space is a full-rank lattice. To see this, first rewrite the equations over R/q as
equations over R, lifting the inputs to R and using an explicit multiple of q in each equation:

• Problem 1: Given A ∈ R, find a short nonzero solution (s, e, r) ∈ R3 to As+ e = qr.

• Problem 2: Given A, b ∈ R, find a short nonzero solution (s, t, e, r) ∈ R4 to As+ e =
bt+ qr.

• Problem 3: Given A1, b1, A2, b2 ∈ R, find a short nonzero solution
(s, t1, t2, e1, e2, r1, r2) ∈ R7 to the system of equations A1s + e1 = b1t1 + qr1,
A2s+ e2 = b2t2 + qr2.

Then eliminate the variable having coefficient 1 in each equation:

• Problem 1: Find a short nonzero vector (s, e) in the image of the map (s, r) 7→ (s, qr−
As) from R2 to R2.

• Problem 2: Find a short nonzero vector (s, t, e) in the image of the map (s, t, r) 7→
(s, t, bt+ qr − As) from R3 to R3.

• Problem 3: Find a short nonzero vector (s, t1, t2, e1, e2) in the image of the map
(s, t1, t2, r1, r2) 7→ (s, t1, t2, b1t1 + qr1 − A1s, b2t2 + qr2 − A2s) from R5 to R5.

These are short-vector problems in lattices of ranks 2p, 3p, 5p respectively.

One should not think that larger ranks are necessarily more difficult. On the contrary, recall
that Problem 3 (rank 5p) cannot be more difficult than Problem 2 (rank 3p), since one
can simply disregard A2, b2, e2, t2. More generally, for each problem, one can separate each
equation over R into p equations over Z, and choose how many of the equations over Z to
discard. Later we will see that this flexibility saves some time in known attacks.

Each of the lattices shown above has (generically) many independent short vectors. The

38

point here is that the solution spaces are R-modules: i.e., one can multiply any solution by
an element of R to obtain another solution. In particular, multiplying a short solution by x
produces another short solution. (For NTRU NTT the size is identical. For NTRU Prime
the size usually increases slightly; multiplying p times by x is the same as multiplying by
x+ 1, which almost always increases the weight considerably. See Section 6.5.)

May and Silverman [69] in 2001 pointed out that forcing some of the coefficients of s to
be 0 saves time in various attacks against Problem 1, because it reduces the lattice rank,
even though (1) this reduces the success probability—perhaps the secret s is nonzero in
those coefficients—and (2) the resulting lattice is no longer an R-module. This speedup also
applies to Problem 2, and here the attacker can force many more coefficients of s and t to
be 0: the standard choice is to force almost all of the coefficients of t to be 0, constraining
t to Z (which still allows t = 1), and also optionally force some of the coefficients of s to be
0. Similar comments apply to Problem 3.

The lattice obtained in Problem 2 by taking t ∈ Z, the image of the map (s, t, r) 7→ (s, t, bt+
qr−As) from R×Z×R to R×Z×R, is typically called the “Bai–Galbraith embedding”
of Problem 2. Similarly, the image of the map (s, t1, t2, r1, r2) 7→ (s, t1, t2, b1t1 + qr1 −
A1s, b2t2 + qr2−A2s) from R×Z2×R2 to R×Z2×R2 is the “Bai–Galbraith embedding”
of Problem 3. Projecting away the first component of this lattice gives the image of the map
(s, t1, t2, r1, r2) 7→ (t1, t2, b1t1 + qr1 − A1s, b2t2 + qr2 − A2s) from R× Z2 ×R2 to Z2 ×R2;
this image is typically called the “Kannan embedding” of Problem 3.

The natural R-modules shown above for Problems 2 and 3, without the added constraint
t ∈ Z, do not seem to be very widely known. On the contrary, there seems to be a common
belief that Problem 1 can be attacked via an R-module while Problems 2 and 3 cannot.
Typically this is phrased as a claim that “NTRU” (meaning Quotient NTRU) is easier
to attack than “Ring-LWE” (meaning Product NTRU) since “the NTRU lattice” (the R-
module shown above for Problem 1) has many independent short vectors while “the Ring-
LWE lattice” (the Bai-Galbraith embedding or the Kannan embedding) has unique short
vectors modulo negation. However:

• There are many choices of lattices for attacking Ring-LWE. These choices include the
natural R-modules shown above, which have many independent short vectors.

• The fastest attacks known on all of these problems select a sublattice that is not an
R-module. These attacks obtain only a limited benefit from the original number of
short vectors.

See Figure 3. Mathematically, it is defensible to consistently define “the” NTRU lattice and
“the” Ring-LWE lattice as the R-modules shown above for Problems 1 and 2 respectively,
but then it is incorrect to claim that “the” Ring-LWE lattice has unique short vectors modulo
negation.

We are not saying that the R-module structure is outside the attack surface of lattice-based
cryptography. On the contrary: it is important to understand how the R-module structure
can be exploited in attacks. For example, the analysis of [60] says that if q is very large
(“overstretched”) in Problem 1 then lattice attacks against the R-module benefit from the

39

Problem 1 Problem 2

natural lattice;
R-module

image of the map
(s, r) 7→ (s, qr − As)

from R2 to R2

image of the map
(s, t, r) 7→ (s, t, bt+ qr − As)

from R3 to R3

sublattice obtained from
speedup of [69];

not an R-module

subset where
some coefficients of s

are forced to be 0

⊆

subset where
some coefficients of s, t

are forced to be 0

⊆

Figure 3: Choices of lattices for attacking Problem 1 (“NTRU”) and Problem 2 (“Ring-LWE
with 1 sample”). In both cases, the natural lattice for attacking the problem is an R-module
and thus has many independent short vectors. In both cases, the speedup from [69] selects
a sublattice that is not an R-module.

presence of many independent short vectors (so [69] is a slowdown for such large q rather than
a speedup). The analogous analysis for Problems 2 and 3 has not been done; [60, Section
7] appears to claim, incorrectly, that no R-module is available to attack Problems 2 and 3.
As another example, algebraic structure features prominently in quantum polynomial-time
breaks of some cyclotomic lattice problems (see [27]) and non-quantum quasi-polynomial-
time breaks of some multiquadratic lattice problems (see [15]). However, Section 6 of this
document focuses on known attacks against small lattice-based encryption systems; this
focus excludes the attacks of [60], [27], and [15].

6.4 Estimate all the {LWE,NTRU} schemes!

In 2018, Albrecht, Curtis, Deo, Davidson, Player, Postlethwaite, Virdia, and Wunderer [4]
published a table showing many different security estimates for many different post-quantum
proposals. In the latest version of this table, the “primal” attack against NTRU Prime has

• non-quantum estimates ranging from 2155 through 2410 for Streamlined NTRU Prime
4591761 (for comparison, our round-1 submission estimated 2248);

• non-quantum estimates ranging from 2156 through 2398 for NTRU LPRime 4591761;

• quantum estimates ranging from 2140 through 2200 for Streamlined NTRU Prime
4591761; and

• quantum estimates ranging from 2141 through 2202 for NTRU LPRime 4591761.

The table also lists somewhat higher estimates for the cost of a “dual” attack against NTRU
LPRime 4591761.

40

We now review the analysis that produced these estimates. We focus on the “primal” attack
here; note that this could be an overestimate of security if the “dual” attack actually produces
better results. We use the smallest reported estimates, 2140 and 2141, as case studies.

Streamlined NTRU Prime key recovery. The objective of the following attack is to find
a small weight-w element f ∈ R and a small element g ∈ R given the ratio h = g/(3f) ∈ R/q.
The distribution of g is not exactly uniform, since g is required to be invertible modulo 3,
but this has very little effect on the analysis. We obtain Problem 1 by relabeling 3h, f, g as
A, s,−e respectively.

Consider, as explained in Section 6.3, the rank-2p lattice of pairs (s, qr − As) ∈ R2 for
(s, r) ∈ R2. This lattice has a short vector (f,−g).

In the first case study, the 2140 estimate for Streamlined NTRU Prime 4591761 key recovery,
the 2-norm of f is

√
286 = 16.91 . . ., and the 2-norm of g is usually close to

√
2p/3 = 22.52

The analysis does not take into account the variations in the 2-norm of g; this simplification
could overestimate or underestimate security.

The attack picks an integer k with 0 ≤ k ≤ p, picks k of the first p positions (the positions
holding s) in the lattice vectors, and considers the sublattice where these positions are all 0.
This sublattice has rank 2p − k. The chance that (f,−g) is in this sublattice is

(
p−k
w

)
/
(
p
w

)
:

there are
(
p
w

)
ways to choose positions for the nonzero entries of f , and only

(
p−k
w

)
ways where

these positions avoid the specified k positions. In the first case study, [4] chooses k = 11,
and then the chance is 0.00536

There are also rotations such as (xf,−xg) in the lattice, and possibly in the sublattice.
At this point [4] assumes that these rotations provide p chances for short vectors in the
sublattice, increasing the overall chance to 0.983 . . . in this case study. There is an implicit
assumption here that the chances are independent; as noted in [69], this is not true in general,
and the attacker can search for choices of positions of entries where the non-independence
gives a better overall chance. The calculation in [4] could thus overestimate security. In
the opposite direction, there is a reason that the calculation underestimates security: most
rotations for NTRU Prime are larger than (f, g) and thus more difficult for lattice attacks
to find. See Section 6.5 below.

The attack also picks an integer m with 0 ≤ m ≤ p, picks m of the last p positions (the
positions holding qr−As) in the lattice vectors, and projects the (sub)lattice away from the
other p−m positions. Formally, consider the map that

• inputs (s, r) ∈ R2 where the specified k positions in s are 0, and

• outputs (s,Extract(qr − As)) where Extract outputs m out of the p input positions.

The image of this map is a lattice of rank p− k + m and determinant qm. In the first case
study, [4] chooses m = 576, so the rank is 1326.

Because g is (almost always) larger than f , the attack “rescales” the lattice, assigning higher
weight to the p− k positions in s than to the m remaining positions. If the scale factor is λ
then the scaled 2-norm of f is λ

√
w, while the 2-norm of the remaining components of g is

41

usually close to
√

2m/3, for a total of
√
λ2w + 2m/3. Meanwhile the scaling increases the

lattice determinant to λp−kqm. If g is actually smaller than f then similar comments apply
but with λ < 1.

The attack now applies a basis-reduction algorithm, specifically BKZ, hoping to discover
the short vector. BKZ has one important parameter for the analysis, a “block size” β. The
analysis predicts the success of BKZ according to the following heuristics:

• BKZ-β finds a nonzero vector of length approximately δd(detL)1/d in a “random”
rank-d lattice L, where δ = (β(πβ)1/β/(2πe))1/(2(β−1)).

This is clearly wrong for β < 13 (since then δ < 1), and not reasonable for β < 36 (since
δ increases with β in this range). For larger β, limited experimental evidence suggests
that the formula overstates the ability of BKZ-β to find short vectors, underestimating
security. This formula is from an asymptotic analysis from [35] as β →∞; even if the
asymptotic analysis is correct, it does not correctly predict the behavior of BKZ-β for
concrete values of β.

• The “geometric-series assumption” from [86] holds.

Considerable experimental evidence shows that this assumption is close to correct.
There are, however, some systematic deviations from the assumption; see generally [13].

• BKZ-β finds a unique (modulo negation) shortest nonzero vector v if and only if the
2-norm of v is at most δ2β−d(detL)1/d

√
d/β.

This heuristic was introduced in [7]. Limited experimental evidence suggests that
this heuristic overestimates security, and that smaller block sizes have a considerable
probability of success. See generally [6]; see also the more precise (and heuristically
argued to be more accurate) probability formulas in [97, Chapter 5] for a similar
problem.

In the first case study, [4] chooses β = 528, so δ = 1.003274 . . ., and chooses λ =
1.32. The short vector usually has 2-norm around

√
λ2w + 2m/3 = 29.7 Meanwhile

δ2β−d(detL)1/d
√
d/β = 29.8 . . ., so the heuristics say that BKZ will find the short vector.

The parameter search was not comprehensive in [4], so it could have overestimated security
for any particular parameter set. We observe that (k, β) = (13, 525) would have produced
slightly better results for the same case study.

Finally, the analysis assumes that BKZ-β costs 20.265β quantum operations. For this case
study with the parameters from [4], there are 1/0.983 . . . retries of BKZ-528, for a total of
2139.94... quantum operations.

To illustrate the accuracy questions regarding δ, we tried the BKZ simulator from [36] for
the choices made in [4] for the first case study. This simulator computes the vector lengths
produced by a particular model of BKZ; see also [13] for a newer model of BKZ. The simulator
reports that β = 528 reaches only δ ≈ 1.00332; that limiting the number of BKZ “tours” (see
Section 6.9) to 8, as commonly recommended, reaches only δ ≈ 1.00334; and that reaching
δ ≈ 1.00327 then requires increasing β to 544. On the other hand, such a large jump in

42

β is overkill: each step in β also affects
√
d/β, which has a larger effect than δ2β−d in this

parameter range.

NTRU LPRime key recovery. The objective of the following attack is to find a small
weight-w element a ∈ R and a small element d ∈ R given G ∈ R/q and b = Ga+ d ∈ R/q.
We obtain Problem 2 by relabeling G, a, d as A, s, e respectively.

Consider, as in Section 6.3, the rank-3p lattice of tuples (s, t, bt+qr−As) ∈ R3 for (s, t, r) ∈
R3. This lattice has a short vector (a, 1, d). As before, the analysis does not take into
account the variations in the 2-norm of d.

The attack has a parameter k as before. The attack chooses a sublattice where k of the
positions for s are forced to be 0 (as before), and where p − 1 of the positions for t are
forced to be 0, forcing t ∈ Z. These choices reduce the lattice rank from 3p to 2p − k + 1.
The probability analysis is as before, but rotations are used entirely for t and not for s, so
increasing k is less useful. For the second case study, [4] takes k = 0.

The attack has a parameter m as before, and projects away p − m positions as before:
consider the map that inputs (s, t, r) ∈ R × Z × R where the specified k positions in s
are 0, and outputs (s, t,Extract(bt + qr − As)). The image of this map is a lattice of rank
p−k+ 1 +m and determinant qm. For the second case study, [4] takes m = 590, so the rank
is 1352.

The attack rescales the lattice as before (in the s component; no scaling is applied to the t
component), and uses BKZ as before, raising all the same questions as before. For the second
case study, [4] takes β = 532, and, using the same 0.265β formula discussed above, assigns
140.98 bits of security to NTRU LPRime 4591761. We point out that the same analysis, for
the same case study, allows β = 531, reducing 140.98 to 140.715.

Compared to the attack against Streamlined NTRU Prime, this attack starts with a more
complicated lattice. After forcing some entries to be 0 (destroying the R-module structure
as before), the attack ends up with a noticeably larger rank: 1 extra for t, and more for the
change in k. On the other hand, the attack is targeting a noticeably smaller vector.

Ciphertext attacks. The key-recovery attack against NTRU LPRime can also be viewed
as a (random-key) ciphertext attack against Streamlined NTRU Prime. However, the error
weight for Streamlined NTRU Prime is larger (e.g., 286 instead of 250 for 4591761), producing
somewhat larger cost estimates from the same analysis.

One can similarly build a lattice for a ciphertext attack against NTRU LPRime. See the
analysis of Problem 3 in Section 6.3. This is the distinction between “LWE n samples” and
“LWE 2n samples” in [4]. There are some schemes where this produces different estimates,
but for NTRU LPRime 4591761 the results in [4] are the same. This is not surprising given
that [4] does not use all of the available samples for the NTRU LPRime 4591761 key-recovery
attack—it projects down to a somewhat smaller rank. Having many more samples allows
other attacks (see Section 6.10), but we have not seen attacks exploiting the number of
samples in NTRU LPRime.

Larger issues. It is not clear that the issues listed above make many bits of difference

43

in security estimates. The elephant in the room, however, is the large range of estimates
appearing in [4] for the quantum cost of the same attack . There is also a non-quantum
elephant in the room, namely the large range of estimates appearing in [4] for the non-
quantum cost of the same attack.

The underlying problem is that [4] uses many conflicting formulas (from a range of sources)
for the cost of BKZ-β in the final stage of the analysis. It acknowledges that “most of these
estimates must be either too optimistic or pessimistic for the attacker”. A closer look at the
original sources of the formulas shows that each of the formulas has questionable accuracy,
and possibly terrible accuracy, raising many problematic questions for security reviewers.
See Section 6.9.

Another potentially very large problem is that known “hybrid attacks” are not included
in [4], even though the NTRU literature indicates that the most effective attacks are hybrid
attacks. See Sections 6.7 and 6.8.

6.5 Rotations

Let F be the space of possible keys f , i.e., the set of small f ∈ R of weight w. There is a
natural equivalence relation on F in the context of Section 6.3: two elements f, f ′ ∈ F are
equivalent if f = uf ′ for some unit u ∈ R. For example, f is equivalent to −f .

The analysis from [4] described in Section 6.4 implicitly assumes that the equivalence class
of f has size exactly 2p, i.e., size p modulo negation. The argument for this is that, in NTRU
Classic, each element f ∈ F is equivalent to the rotations xif ∈ F for i ∈ {0, 1, . . . , p− 1},
and to −xif ; presumably these rotations and negations are all distinct.

We point out a (presumably) small problem and a larger problem with this analysis. The
small problem is that there could be unit multiples uf ∈ F where u does not have the form
±xi. There is an intuitive argument that this is rare: multiples such as (1+x)f usually have
much higher weight than f (and are thus more difficult for the lattice attack in Section 6.4
to find). However, we have not found literature quantifying this.

The larger problem is that [4] used the same analysis for NTRU Prime. The reason this is a
problem is that, for NTRU Prime, the statement xif ∈ F is unjustified. The following nu-
merical evidence suggests that the same assumption is overestimating the sizes of equivalence
classes for NTRU Prime, and thus underestimating Streamlined NTRU Prime security.

Take p = 761 and w = 286. We generated 10000000 random f ∈ F , and counted the number
of small weight-w rotations xif with −5000 ≤ i ≤ 5000 (never finding any with |i| > 1000).
In 86.7% of the cases, there were 10 or fewer such rotations. In 99.2% of the cases, there were
20 or fewer such rotations. In 99.96% of the cases, there were 30 or fewer such rotations. In
99.999% of the cases, there were 40 or fewer such rotations.

To understand why rotations are less effective for NTRU Prime than for NTRU Classic, write
the degree of a random f as p− c. Typically c is around p/w, since there are w terms in f .
Multiplying f by x, x2, . . . , xc−1 produces elements of F , but multiplying f by xc replaces

44

xp−c with xp mod xp − x− 1 = x+ 1, changing its weight and thus leaving F . It is possible
but rare for subsequent multiplications by x to reenter F . Similarly, one expects only about
p/w divisions by x to stay within F , for a total of only about 2p/w equivalent keys, or p/w
when negations are taken into account. We have constructed classes of pathological examples
of f that allow considerably more rotations (including non-consecutive rotations), but none
of these classes will be encountered by chance.

We have also considered various expansions of F . We counted the number of rotations
having 1-norm w, without the requirement of smallness; this changed the percentages to
84.1%, 98.9%, 99.93%, 99.997% respectively. We counted the number of rotations having
2-norm at most 1.1

√
w; then there were 62.9% with 200 or fewer such rotations, 99.8% with

300 or fewer such rotations, and 99.995% with 350 or fewer such rotations. This 1.1
√
w

corresponds to a weight increase of 21%; to put this into perspective, the increase in weight
from NTRU LPRime 4591761 to Streamlined NTRU Prime 4591761 is only 14.4%.

In our round-1 submission we assumed an equivalence-class size not far below 2p, with
the caveat that this appeared to underestimate security. To simplify comparability to the
analysis of [4], our calculations below assume an equivalence-class size of exactly 2p, again
with this caveat.

We comment that switching from Quotient NTRU to Product NTRU does not remove the
need for this type of quantitative analysis. On the contrary, there are many options for taking
high-probability sublattices of the natural R-module for Problem 2 in Section 6.3. Perhaps
sublattices of the Bai–Galbraith embedding are optimal, but this has not been proven.

6.6 Interlude: memory, parallelization, and the cost of sorting

Large-scale attacks are limited by (1) the amount of hardware that the attacker can afford
and (2) the amount of time that the attacker spends running this hardware. Chips of total
area A, running for time T , can perform a total of AT bit operations. This also costs energy
proportional to AT , which does not pose a scaling problem: the chips are laid out in two
dimensions, receiving energy (and dissipating heat) through the third dimension.

Now consider the cost of sorting M small items, where M is very large. Parallel “mesh”
sorting algorithms such as the Schnorr–Shamir algorithm [88] sort M items in real time
M1/2+o(1) using hardware area M1+o(1). This is optimal in realistic models of computation.

(Analogous sorting algorithms reduce the exponent 1/2 to 1/3 in abstract “three-dimensional
mesh” models of computation. However, in more realistic models that account for the cost
of energy transmission, the best exponent for known algorithms is 1/2.)

To summarize, sorting M items is as expensive as performing M3/2+o(1) bit operations. This
is important for some attack subroutines described below, and for many other cryptanalytic
computations.

Textbook presentations of sorting instead say that sorting M items costs just M1+o(1) “op-
erations”. Memory is treated as a minor secondary issue (“we assume that enough RAM is

45

available”). This view deviates from reality in two critical ways.

First, a single “operation” that accesses memory has real cost growing with the amount of
memory. Specifically, the time and energy grow linearly with the communication distance,
which in turn grows as the square root of the amount of memory. Concretely, Intel reported
in [45, page 9] that its energy cost of moving data is 11.20 pJ “per 5 mm” to move 8 bytes
at 22nm. The same report indicates that this communication cost is “More difficult to
scale down”, whereas computation cost will “scale well with process and voltage”. Other
communication technologies similarly have cost scaling with distance.

Second, an attacker who can afford a huge amount of memory can instead use the same
amount of hardware for a parallelizable low-memory computation, obtaining an almost linear
parallelization speedup. Concretely, for the same cost as G gigabytes of memory, one can
buy graphics-processing units (GPUs) with a total of approximately 32G parallel “cores”,
each of which is capable of carrying out a useful arithmetic operation every clock cycle. For
large-scale attackers it is even more cost-effective to build special-purpose hardware, using
an even larger number of smaller cores focused on the task at hand.

The bottom line is that simply counting “operations” does not correctly assign cost exponents
to algorithms. Compare, for example, the following two types of algorithms:

• Algorithm 1 uses A1/4 size-A sorting steps, a total of A5/4+o(1) “operations”. It finishes
in real time A3/4+o(1) on hardware area A, since each sorting step takes time A1/2+o(1).

• Algorithm 2 uses A3/2 parallelizable low-memory operations. It finishes in real time
A1/2+o(1) on hardware area A.

Algorithm 1 uses fewer “operations” than Algorithm 2, by a factor A1/4+o(1). However,
Algorithm 2 takes less time than Algorithm 1, by a factor A1/4+o(1), using the same amount
of hardware. Algorithm 2 is thus preferable for the attacker.

6.7 Meet-in-the-middle attack

As a warmup for hybrid attacks, we review Odlyzko’s meet-in-the-middle attack [57, 55] on
NTRU. We adapt the attack to the context of Streamlined NTRU Prime: for example, we
account for the impact of changing xp − 1 to xp − x − 1, and using small f rather than
f = 1 + 3F with small F . For direct comparisons to the original NTRU cryptosystem, we
assume that the weight w in Streamlined NTRU Prime is taken as 2t, and that the original
NTRU cryptosystem takes exactly t entries 1 and exactly t entries −1.

Odlyzko’s attack works by splitting the space of possible keys F into two parts such that
F = F1 ⊕ F2. Then in each loop of the algorithm partial keys are drawn from F1 and F2

until a collision function (defined in terms of the public key h) indicates that f1 ∈ F1 and
f2 ∈ F2 have been found such that f = f1 + f2 is the private key.

The number of choices for f is
(
p
t

)(
p−t
t

)
in original NTRU and

(
p
2t

)
22t in Streamlined NTRU

Prime. A first estimate is that the number of loops L in the algorithm is the square root

46

of the number of choices of f . However, this estimate does not account for equivalent keys.
The algorithm succeeds if it finds any key in the equivalence class of f defined in Section 6.5.
If most equivalence classes have size approximately E then a better estimate is that the
number of loops is divided by

√
E: i.e.,

L =

√(
p

2t

)
22t

/
√
E (1)

for Streamlined NTRU Prime.

Analyses of NTRU normally take E = 2p, although this might overestimate security for
NTRU Classic, and seems to underestimate security for NTRU Prime. See Section 6.5. One
could modify the attack to use a larger set F , but this seems to lose more than it gains.

Almost-collision probabilities. Odlyzko defines a collision function as follows. Given f1,
multiply by the given g/f , extract some coordinates of the product, and assign a bit to each
coordinate by partitioning Z/q into two halves. Given f2, multiply by −g/f and similarly
extract bits. The number of coordinates is chosen large enough that collisions on all these
bits are unlikely to occur by chance.

There is, however, no guarantee that a collision will occur for the target f . If f = f1 + f2

then (g/f)(f1 + f2) = g so each coordinate c1 of (g/f)f1 differs from the corresponding
coordinate c2 of (−g/f)f2 by something small, namely the corresponding coordinate of g.
Usually c1 and c2 will be in the same half of Z/q, but it is possible for c1 to be at one edge
of one half while c2 is in the other half, and considering more coordinates makes this type of
failure more likely. Analyses vary in whether they calculate this failure probability, ignore
this failure probability, or do more work in the algorithm to eliminate the failures.

Memory consumption. In each loop of the algorithm, t vectors of size p are added and
their coefficients are reduced modulo q. A simple estimate of the attack cost is Lpt, where
L is the number of loops.

There is, however, a problem here: finding the target collision requires L accesses to an
array of size L, a tremendous amount of memory. This means that the L factor is a severe
underestimate of the cost: the real cost of the computation is L3/2+o(1). See Section 6.6.

The pt factor could be an overestimate if the work inside the loop can be reduced. On
the other hand, straightforward approaches such as caching sums of vectors exacerbate the
memory problem.

Reducing memory consumption. There are well-known techniques to perform collision
search using very little memory. However, for meet-in-the-middle attacks one needs “golden-
collision search”, which is more difficult than collision search.

General techniques for golden-collision search from [73] were adapted in [95] to Odlyzko’s
approximate-collision context. The bottom line—we disregard o(1) here for simplicity—is
that one can reduce the storage capacity by a factor s at the expense of increasing the
number of loops by a factor

√
s.

47

For example, instead of L loops using L hardware (real cost L3/2), one can perform L9/8 loops
using only L3/4 hardware (again real cost L3/2). This gives the user flexibility in adapting
the meet-in-the-middle attack to the amount of hardware available.

Quantum search. Göpfert, van Vredendaal, and Wunderer [49], generalizing a suggestion
by Schanck, replace Odlyzko’s meet-in-the-middle attack with a quantum search through
F . (Even more generally, [49] replaces the hybrid attack—see Section 6.8—with a quantum
hybrid attack.) This again takes L loops but has the advantage of using very little memory.

On the other hand, the L loops here are required to be serial. Limiting the real time to T
requires (L/T)2 parallel quantum searches, increasing the real cost to L2/T . Estimating the
cost as just L is underestimating security, as NIST has recognized in the context of quantum
attacks against AES.

6.8 Hybrid attacks

The latest estimates for the cost of a hybrid attack are from Wunderer’s thesis [97] in 2018,
including various examples where the security estimates are far below the security estimates
from [4]. We now review the analysis of hybrid attacks. Note that [96] and [97] point out
various errors, underestimates, and overestimates in previous work.

Hybrid attacks were originated by Howgrave-Graham [55] in the context of Problem 1, and
are featured in typical security analyses of Problem 1, but are ignored in most security analy-
ses of Problems 2 and 3. This appears to be a historical accident, arising from exaggerations
of the difference between Problem 1 and Problem 2.

Notation. We follow the standard convention of having matrices act as linear transfor-
mations on column vectors: M maps v to Mv. For conciseness, we abbreviate the column

vector

1
2
3

 as (1, 2, 3), not to be confused with the row vector
(
1 2 3

)
. Similarly, if v

and w are column vectors, we write (v, w) for the column vector obtained by concatenating
v with w.

Setup. The hybrid attack begins with the general problem of finding a short vector of the
form (qr + Cu, u), where r and u are integer vectors, given a matrix C. This includes all of
the lattice problems from Section 6.3:

• Problem 1: Take the matrix C with Cs = −As.
• Problem 2: Take the matrix C with C(s, t) = bt− As.
• Problem 3: Take the matrix C with C(s, t1, t2) = (b1t1 − A1s, b2t2 − A2s).

Optionally choose a sublattice where some of the coordinates of (r, u) are 0, as in Section 6.4;
this produces a problem of the same form, with a shorter (r, u) and with C shrunk accord-
ingly. Also, optionally project away some of the output coordinates, as in Section 6.4; this
again produces a problem of the same form.

48

Basis reduction. The hybrid attack has two main computational phases. The first phase
is lattice-basis reduction, specifically BKZ-β for some block size β.

In the lattice attack in Section 6.4, β is chosen large enough that the shortest basis vector
is (hopefully) the target vector modulo negation. The hybrid attack tries to do better
by allowing β to be smaller (making BKZ-β faster), and using the second phase below to
compensate for the longer basis. The optimal balance between the two phases depends on
the cost of BKZ-β; underestimating (or overestimating) the cost can make the hybrid attack
seem less (or more) useful than it actually is.

Specifically, the hybrid attack has a parameter σ, an integer between 0 and the length of u.
The attack views u as having two parts (t, s), where s has length σ; the problem is now to
find a short vector of the form (qr + C1t + C2s, t, s). Say C1 is an a× b matrix, so b + σ is
the length of u.

The attack applies basis reduction to the matrix(
qIa C1

0 Ib

)
.

The output of basis reduction is a relatively short matrix R generating the same lattice: i.e.,
the lattice of (qr + C1t, t) for all (r, t) is exactly the lattice of Rz for all z. The original
lattice of (qr+C1t+C2s, t, s) is the lattice of (Rz+Ss, s) where S has the form (C2, 0); i.e.,
the matrices qIa C1 C2

0 Ib 0
0 0 Iσ

 ,

(
R S
0 Iσ

)
generate the same lattice.

As an extreme case, if σ = 0, then this is the same basis reduction as in Section 6.4, and the
second phase is skipped. At the opposite extreme, if σ is the full length of u, then the first
matrix above is simply qIa, reduction outputs R = qIa, and the second phase of the hybrid
attack is the same as the meet-in-the-middle attack described in Section 6.7.

For intermediate values of σ, the analysis quantifies the effect of basis reduction as follows.
The lattice has rank d = a+ b and determinant qa. Define δ = (β(πβ)1/β/(2πe))1/(2(β−1)) as
in Section 6.4, and define k = min{d, b(b/ logq δ)

1/2c}. The analysis then states that the d
output Gram–Schmidt vectors have approximately the following lengths: d− k copies of q,
followed by

q1−b/kδk−1, q1−b/kδk−3, . . . , q1−b/kδ−(k−1).

The product of these d lengths is qd−k(q1−b/k)k = qd−b = qa as required. The general shape
of these lengths, with d − k orthogonal vectors (not affected by reduction) followed by a
geometric drop, is based on many experiments; on the other hand, (1) the experiments do
not support the formula for δ (see Section 6.4), and (2) the experiments show some systematic
deviations from the geometric-series assumption. Also, these formulas do not account for the
possibility of rescaling smaller input positions; taking only scale 1 can overestimate security.

49

A standard speedup here for k < d, given that the analysis predicts that the first d − k
vectors will be unchanged, is to not bother reducing those d − k vectors. This allows basis
reduction to work with a lattice of rank k instead of d. This speedup is not visible in BKZ-β
cost models that use only β and that ignore the lattice rank; some of the cost models in
Section 6.9 are of this type.

Search. The second phase of the hybrid attack searches for a short vector of the form
(Rz + Ss, s). Recall that s has length σ. The matrix R is produced by the basis reduction
in the first phase.

The attack chooses a set of possibilities for s to search. Weight restrictions make the search
faster. We return below to the optimal choice of this set.

We will see in a moment how the attack tries to expand a candidate s into a short vector
(Rz + Ss, s). Having the target s in the set searched is not enough to guarantee the success
of the attack: even if (Rz + Ss, s) is short, the attack might instead find (Rz′ + Ss, s) for
z′ 6= z and thus discard s. To evaluate the chance that the attack succeeds, the analysis
compares (1) the size of the short vector (Rz + Ss, s) to (2) how far R has been reduced.
Having the attack succeed relies on the first phase to have reduced the basis sufficiently,
which in turn needs β to be large enough.

To check a candidate s, the hybrid attack checks whether Ss − NearR(Ss) is small. Here
NearR(Ss) is defined as the output of Babai’s nearest-plane algorithm starting from the
matrix R and the point Ss. This output is in the lattice generated by R; in other words,
Ss− NearR(Ss) is a reduction of Ss modulo R. The algorithm runs in polynomial time.

If the target Rz+Ss is sufficiently small, compared to how well reduced R is, then Near(Ss) =
−Rz, and the attack finds Rz+Ss as desired. The probability that this occurs is heuristically
estimated in [97, Section 5.3.2, formula (5.6)] as

∏
1≤i≤d

(
1− 2

B(d−1
2
, 1

2
)

∫ 1

min{ri,1}
(1− t2)(d−3)/2 dt

)

where ri is the ith Gram–Schmidt length divided by 2|Rz + Ss|2, and

B

(
d− 1

2
,
1

2

)
=

∫ 1

0

t(d−3)/2(1− t)−1/2 dt = 2

∫ 1

0

(1− t2)(d−3)/2 dt.

More experimental evidence is needed to test the accuracy of this estimate.

(Wunderer mentions that the integrals here can be computed by, e.g., the Sage computer-
algebra system. We comment that Sage has a built-in function beta for B, and, more
to the point, a built-in function for each factor Pi in the product

∏
1≤i≤d Pi above, given

ri: after defining T = RealDistribution(’beta’,((d-1)/2,1/2)) one can compute Pi as
1-T.cum_distribution_function(1-ri^2).)

The previous literature, instead of asking whether the algorithm finds Rz + Ss, usually
asks whether the target is small enough to apply a particular theorem guaranteeing that the
algorithm finds Rz+Ss. This can overestimate or underestimate security. Overestimate: the

50

algorithm can work even when the theorem does not guarantee that it works. Underestimate:
there is an error in the usual applications of the theorem, as pointed out in [97, pages 70–71].

Choice of the set to search. If the target s is extracting a limited number of positions
from a weight-w vector then s probably has weight below w. The set of s searched in,
e.g., [96] is the set of s having the single most likely weight, and, within this, the single most
likely split between the number of 1’s and the number of −1’s. (The set is further restricted
in the meet-in-the-middle context.)

However, for typical parameters, there are many choices of weights and splits that are almost
as likely. Searching all of those together gains performance, since the work in the first phase
is shared. This was pointed out in [97, Section 7.3] for the quantum hybrid attack, but it
also applies to the non-quantum case.

This does not mean that one should search all possibilities. Searching very unlikely weights
is less efficient than restarting the algorithm with new random choices of positions. To
optimize the choice of the set of s, one needs to take into account how the choice affects
the cost of the search (which is one component of the total cost of the algorithm) and the
probability that the algorithm succeeds.

The cost details depend on whether one uses a meet-in-the-middle attack or a quantum
search; see below. Regarding probabilities, the main question analyzed in [97, Section 7.3]
is the chance that s is in the set.

Choose an interval I ⊆ {0, 1, . . . , σ}, and take the set
⋃
i∈I Si, where Si is the set of small

weight-i length-σ vectors s. More generally, [97, Section 7.3] considers removing part of S`
from

⋃
i∈I Si, where ` is the least likely i ∈ I.

Assume again that s is obtained by extracting σ positions from a uniform random small
weight-w length-p vector f . There are

(
σ
i

)
2i elements of Si, and each element is compatible

with
(
p−σ
w−i

)
2w−i choices of f , out of the

(
p
w

)
2w total choices of f . Hence s ∈

⋃
i∈I Si with

probability
∑

i∈I
(
σ
i

)(
p−σ
w−i

)
/
(
p
w

)
.

We point out that this analysis ignores the following correlation: if s has lower/higher weight
then the rest of the vector has higher/lower weight and is thus less/more likely to be found
by the Near computation. It is not clear whether ignoring this correlation overestimates or
underestimates security.

Meet-in-the-middle. To save time, the second phase of the hybrid attack actually identifies
s through a collision search.

Choose a partition of the σ positions in s into two halves. Write s as s1 + s2 where s1 is
supported on the first half and s2 is supported on the second half. Choose a set of possibilities
for s1 to search, and a set of possibilities for s2 to search, so that the sums s1 + s2 cover
many of the most likely choices for s.

Above we considered the chance that Near(Ss) = −Rz for the short target Rz + Ss. If this
occurs then it is not unreasonable to also hope that Near(Ss1) + Near(Ss2) = Near(Ss),
i.e., that Ss1 − Near(Ss1) and Ss2 − Near(Ss2) have sum Ss − Near(Ss) = Rz + Ss, so

51

the coordinates of Ss1 − Near(Ss1) and Near(Ss2) − Ss2 are close, producing a collision of
extracted bits as in Section 6.7.

The meet-in-the-middle approach is generally advertised as reducing the number of Near
computations to its square root. However, the memory-consumption issues analyzed in Sec-
tion 6.7 are applicable here, so the real cost improvement is only a fourth root. Furthermore,
the decomposition of s into s1 and s2 reduces the success probability of the algorithm, for
two reasons:

• Collisions are not guaranteed to occur. On the contrary, the chance that Near(Ss1) +
Near(Ss2) = Near(Ss) can be much smaller than 1. The latest heuristic analysis is in
[97], but again more experimental evidence is needed. Most of the literature on hybrid
attacks treats the collision chance as 1, underestimating security.

• Searching only the most likely weights for s1 and the most likely weights for s2 is more
restrictive than searching only the most likely weights for s.

A reasonable (but perhaps not optimal) choice of sets to search is the following. Say s1 has
length σ1 and s2 has length σ2, with σ = σ1 + σ2. Choose an interval I1 ⊆ {0, 1, . . . , σ1},
and search all s1 ∈

⋃
i∈I1 Si,1, where Si,1 is the set of small weight-i length-σ1 vectors s1.

Similarly choose an interval I2 ⊆ {0, 1, . . . , σ2}, and search all s2 ∈
⋃
i∈I2 Si,2, where Si,2 is

the set of small weight-i length-σ2 vectors s2.

The total size of the s1 search space and the s2 search space is
∑

i∈I1 2i1
(
σ1
i1

)
+
∑

i∈I2 2i2
(
σ2
i2

)
.

The chance that (s1, s2) is in the product of search spaces, when s1 and s2 are obtained
by extracting disjoint positions from a uniform random small weight-w length-p vector f , is∑

i1∈I1
∑

i2∈I2

(
σ1
i1

)(
σ2
i2

)(
p−σ1−σ2
w−i1−i2

)
/
(
p
w

)
.

As an experiment, we took p = 761, w = 286, σ1 = 199, and σ2 = 200, and searched
(not comprehensively) for the choices of (I1, I2) that Pareto-optimize (1) the total size of
the s1 and s2 search spaces and (2) the chance that (s1, s2) is in the product of the search
spaces. We found, e.g., (2293.575, 2−0.000320566) for I1 = {0, . . . , 97} and I2 = {0, . . . , 96};
(2268.079, 2−1.02933) for I1 = I2 = {0, . . . , 98}; (2262.99, 2−2.11644) for I1 = I2 = {0, . . . , 75};
(2256.791, 2−4.26975) for I1 = {0, . . . , 72} and I2 = {0, . . . , 71}; (2249.187, 2−8.14923) for I1 =
{0, . . . , 68} and I2 = {0, . . . , 67}; and many intermediate examples. We also explored a
slightly more general choice of sets, taking only a fraction of Si for the maximum i ∈ I2; this
did not noticeably change the shape of the Pareto-optimal curve, although it did fill in even
more intermediate points. We did not find any Pareto-optimal examples with the maxima
of I1 and I2 separated by more than 1.

The literature usually treats each invocation of the Near algorithm as having cost 1, under-
estimating security. Wunderer quotes [52] as claiming just d2/21.06 bit operations for Near
in rank d, but all known algorithms are slower than this.

Quantum search. An alternative, from [49], is a quantum search through the set of s.
If ps is the probability of s then inside the quantum search one should choose each s with
probability proportional to p

2/3
s , and run the search for (

∑
s p

2/3
s)3/2 iterations; see [49] for

an explanation of the exponents here.

52

Like the quantum search in Section 6.7, this fits in low memory, and it eliminates issues
arising from the decomposition of s into s1 + s2. However, as in Section 6.7, the cost
increases if the total attack time is limited.

6.9 The cost of BKZ

The first version of BKZ, introduced by Schnorr and Euchner [87], works as follows. BKZ
solves SVP on the lattice generated by the first β basis vectors b1, . . . , bβ, and updates the
basis to include the short vector found by SVP. BKZ then does the same for b2, . . . , bβ+1,
and then b3, . . . , bβ+2, and so on through all of the basis vectors (with block sizes decreasing
below β for the final vectors); this completes one BKZ “tour”. BKZ repeats these tours until
the basis stops changing.

BKZ solves SVP on the lattice generated by b1, . . . , bβ using “enumeration”, as in [79, 47, 59].
Enumeration is a pruned combinatorial search for integer vectors (c1, . . . , cβ) such that c1b1 +
· · · + cβbβ is short (specifically, shorter than the shortest vector found so far). The pruning
uses a formula for the maximum size of c1 given that c1b1 + · · ·+ cβbβ is short; then, for each
c1, a formula for the maximum size of c2 given that c1b1 + · · · + cβbβ is short; etc. These
formulas produce smaller outputs and thus faster enumeration when b1, . . . , bβ are closer to
orthogonal, so BKZ calls LLL as a preprocessing step before each SVP computation.

Today “BKZ” refers to a more complicated algorithm with many adjustable parameters:

• For large β, each use of LLL is replaced by more expensive preprocessing, typically
recursive calls to BKZ-β′ for some β′ < β. This takes time but speeds up enumeration.

• Instead of searching every coefficient ci that could possibly lead to a shorter vector, the
attacker searches a more limited range of coefficients ci that are most likely to lead to
a sufficiently short vector. This reduces the success probability of the SVP step, but
compensates with a larger savings in time.

• Bases are extended to larger generating sets. The attacker accumulates a database of
short combinations of the original basis vectors, and tries to reduce each new vector
by subtracting nearby elements in the database, rather than merely by subtracting
multiples of the original basis vectors. Various specific strategies for doing this are
called “sieving” algorithms.

• The number of tours is limited, typically to 8. This limit is based on graphs showing
that, in small-scale experiments, most of the improvements in output quality are from
the earliest tours; see, e.g., [51, Figure 1]. However, the usual calculations of β are
sensitive to the exact output quality, so a small loss of output quality can produce a
large slowdown from a larger value of β. We have not found quantitative analyses in
the literature claiming that 8 is optimal; we have not even found analyses claiming
that the optimal number of tours is constant as β increases.

See, e.g., [36] for a 2011 version of BKZ with some of these features (“BKZ 2.0”); [16, 63]
for more recent sieving methods; [10] for more recent pruning methods; and [5] for further

53

variants. See also [65] for quantum versions of some sieving algorithms, and [11] for a
quantum enumeration algorithm.

BKZ cost asymptotics. There is a consensus that the version of BKZ in [87] costs 2O(β2)

if the number of tours is limited and if β is not too small compared to the lattice dimension;
that recursive preprocessing, first used in [59], reduces O(β2) to O(β log β); and that sieving
reduces O(β log β) to O(β).

There are some proofs of more precise asymptotic upper bounds for the number of “opera-
tions” used for some SVP algorithms. For example, an algorithm from [81] solves dimension-
β SVP using 22.465...β+o(β) “operations”, and an algorithm from [2] solves dimension-β SVP
using 2β+o(β) “operations”. However, these upper bounds are generally believed to be vastly
larger than the number of “operations” in the best algorithms known.

There are also heuristic analyses that try to produce more accurate asymptotics for vari-
ous algorithms. (There are also many other aspects of lattice attacks relying on heuristic
analyses; see, e.g., Section 6.4.) For example, the analysis of [72] states that a particular
sieving algorithm uses 20.415...β+o(β) “operations”. A new wave of sieving algorithms start-
ing in 2013 culminated in the analysis of [16], concluding that the algorithm of [16] takes
just 20.292...β+o(β) “operations”. The constants 0.415 . . . and 0.292 . . . here are log2(4/3) and
log2

√
3/2 respectively.

Memory consumption. Enumeration fits into very little memory even for large β. Kuo,
Schneider, Dagdelen, Reichelt, Buchmann, Cheng, and Yang [62] showed that enumeration
parallelizes effectively within and across GPUs.

Sieving algorithms in the literature typically use a massive database, size 20.2075...β+o(β) (and
often even larger). This multiplies the real cost of the algorithms by 20.1037...β+o(β); see
Section 6.6.

It is sometimes claimed that sieving algorithms must use 20.2075...β+o(β) space, so sieving
algorithms necessarily cost this much, so SVP algorithms necessarily cost this much. The
first step in this argument was disproven by “tuple lattice sieving”, which achieved a smaller
space exponent. Tuple lattice sieving has a larger time exponent and is ignored in [4].

How concrete cost formulas for BKZ are produced. The asymptotic formula
0.292 . . . β + o(β) means β times something that converges to 0.292 . . . as β → ∞. The
o symbol, by definition, says nothing about any particular value of β. For example,
0.292 . . . β + o(β) could be 1000 for β = 500, even though 0.292 . . . · 500 is under 147.

Readers often think—or hope—that o(β) can be ignored, i.e., replaced with 0. However,
ignoring o() in asymptotics can lead to misstating security levels by an unlimited number
of bits: e.g., claiming 2100 “operations” or 2300 “operations” for an attack that actually
uses 2200 “operations”. Furthermore, small-scale experiments show deviations, often large
deviations, from the resulting formulas. Consider, e.g., [16, Figure 3], which reports a best
fit of 20.387β−15 for its fastest sieving experiments.

There are two common responses in the literature on lattice-based cryptography to the
problem of a cost formula that does not match experiments. One standard response—when

54

the experiments are consistently slower, as often happens—is that the cost formula ignored
“polynomial factors” that are visible in the experiments. This leaves the security reviewer
with many unanswered questions: How large could these factors become when attacks are
scaled up? Why should we think that the underestimate is only polynomial? Could the cost
formula overestimate security for larger sizes, for example by a subexponential factor that
is not visible in small-scale experiments?

Another standard response is to complicate the formula in a way that

• is consistent with the known asymptotics and

• leaves more free variables to improve the fit of the formula to the experiments.

For example, the formula 0.187β log2 β−1.019β+16.1, one of the cost formulas used in [4], was
obtained as follows. A heuristic asymptotic analysis states Θ(β log β) for some enumeration
algorithms. Experiments are a poor fit to aβ log β, so instead hypothesize a formula of
the form aβ log2 β + bβ + c. Unsurprisingly, the extra variables allow a better fit to the
experiments. This again leaves the security reviewer with many unanswered questions: Why
should we think that the formula accurately predicts the cost of much larger computations?
What happens if the actual cost follows a formula with a different shape?

Four of the conflicting formulas used in [4] are 0.292β (“Core-SVP”), 0.292β+16.4, 0.292β+
log2 β, and 0.292β + 16.4 + log2(8d). The first formula simply takes the 0.292 . . . β + o(β)
asymptotic and imagines that o(β) is 0 (and rounds to 0.292). The second and third formulas
imagine that there is a constant-factor overhead, or a β-factor overhead. The fourth formula
is like the second formula but includes 8 tours, each with d SVP calls. Another four formulas
replace 0.292 with 0.265 for the quantum case.

Another two formulas are 0.368β for the non-quantum case and 0.2975β for the quantum
case. These are the “operation” exponents for two “minimum-space” algorithms that have
space exponents 0.208.

The other four formulas use enumeration rather than sieving. Two of these formulas,
0.187β log2 β − 1.019β + 16.1 as mentioned above and 0.000784β2 + 0.366β − 0.9 + log2(8d)
(from [53]), were obtained by fitting two different shapes to the same data. These formulas
are (as pointed out by Schanck) within 10 bits of each other for all costs below 2256, and it is
not clear which formula has larger errors in this range (even assuming accuracy of the original
data). The third formula, 0.125β log2 β − 0.755β + 2.25, was introduced as a “lower bound”
on a class of enumeration algorithms. The last formula, (0.187β log2 β−1.019β+ 16.1)/2 for
the quantum case, starts from the first formula and hypothesizes an exact 1/2 factor from
quantum search; [11] justifies a 1/2+o(1) factor, but does not justify exactly 1/2. Note that
quantum searches normally have considerable overhead for their inner loops.

The cutoff between sieving and enumeration. Imagine, in the quantum case, that
the (0.187β log2 β − 1.019β + 16.1)/2 formula above accurately predicts enumeration cost,
and that the 0.265β + 16.4 formula above accurately predicts sieving cost. Then sieving
and enumeration both cost about 2114 for β ≈ 368; enumeration is faster for smaller β, and
sieving is faster for larger β.

55

We emphasize that this 368 cutoff is extremely sensitive to the exact numbers in the formulas,
since log2 β grows very slowly with β. For example, imagine that another algorithm improves
the secondary enumeration term from −1.019β/2 to −1.119β/2. This makes the cutoff leap
from cost 2114 at β ≈ 368 to cost 2151 at β ≈ 509.

For comparison, [48] estimated that its pruning improvements saved a factor 20.25β com-
pared to earlier pruning methods. The (0.187β log2 β − 1.019β + 16.1)/2 formula already
takes account (indirectly) of this improvement, but it does not take account of more recent
improvements such as [10].

As a more extreme example, take the original enumeration formula, but add 0.104β to the
sieving formula to account for the real cost of memory. This produces an even more dramatic
change in the cutoff, up to 2225 operations at β ≈ 610.

Improvements in sieving could swing the cutoff the other way. The recent paper [5] claims
that this has happened in the non-quantum case—that its latest sieving algorithm is “400
times faster” than enumeration in a small-scale experiment, which surely means that sieving
has an even larger advantage for cryptographic sizes. However, this experiment used 246
gigabytes of RAM. For the same hardware cost, an attacker can purchase many thousands of
GPU “cores”, massively parallelizing enumeration as explained in [62]. The comparison in [5]
ignores this competitor (and also ignores more recent enumeration algorithms such as [10]).
Larger examples will give the attacker larger benefits from the massive parallelizability of
enumeration, and will make the costs hidden in [5] more obvious.

Perhaps the approach of [5] can outperform enumeration algorithms for an attack that fits
within a reasonable security target, or perhaps not; more analysis is required. To quantify
the cutoff between the known algorithms, a security reviewer needs to investigate both classes
of algorithms in detail, taking care to avoid oversimplified asymptotics, unjustified extrapo-
lations, and unrealistic cost models. Future improvements in sieving or in enumeration will
require a reevaluation of the cutoff.

6.10 Algebraic attacks

The attack strategy of Ding [43], Arora–Ge [12], and Albrecht–Cid–Faugère–Fitzpatrick–
Perret [3] takes subexponential time to break dimension-n LWE with noise width o(

√
n),

and polynomial time to break LWE with constant noise width. However, these attacks
require many LWE samples, whereas typical cryptosystems in the NTRU family provide far
less data to the attacker. When these attacks are adapted to cryptosystems that provide
only (say) 2n samples, they end up taking more than 20.5n time, even when the noise is
limited to {0, 1}. See generally [3, Theorem 7] and [67, Case Study 1].

56

6.11 A selection of estimates

There are many proposals of lattice-based cryptosystems, and of parameter sets for those
cryptosystems. What are the pre-quantum and post-quantum security levels of each of these
parameter sets?

The literature contains many different strategies to compute answers to this question. Given
the issues described in Sections 6.4 through 6.9, it seems reasonably clear that all of these
strategies are wrong, but that some strategies are more wrong than others. This creates
serious problems in using the results: for example, deciding what parameter sizes are needed,
or evaluating the merits of more specific design decisions such as the choice of weight.

It is important to put a warning note next to estimates that allow free access to arbitrarily
large amounts of memory; see Section 6.6. It is also important to put a warning note next to
estimates that disregard hybrid attacks. These issues interact: it is harder to see the value
of hybrid attacks if sieving is assumed to handle BKZ-β cheaply, and it is harder to see the
true cost of sieving if memory is incorrectly assumed to be free.

With all of the above caveats in mind, we consider four options for cost estimates: operation
exponent 0.292β or 0.18728β log2 β − 1.0192β + 16.1; real cost of memory or free memory;
hybrid attacks allowed or not; quantum speedups allowed or not. Three combinations turn
out to be redundant (for known algorithms), leaving the following 13 cost estimates that we
use in Section 7:

• Non-quantum 0.292β, non-hybrid, free memory. Many post-quantum proposals have
reported results from this estimate, and NIST has asked for a comparison using the
same estimate.

• Non-quantum 0.292β, hybrid, free memory. This is the same cost model but corrects
the omission of hybrid attacks.

• Non-quantum 0.396β, non-hybrid, real cost of memory. This corrects the cost model.
The 0.396β assumes exponent 0.292β for the number of memory accesses and exponent
0.208β for the amount of memory.

• Non-quantum 0.396β, hybrid, real cost of memory.

• Non-quantum 0.18728β log2 β− 1.0192β + 16.1, non-hybrid, real cost of memory. This
has the advantage of naturally being a low-memory algorithm.

• Non-quantum 0.18728β log2 β − 1.0192β + 16.1, hybrid, free memory.

• Non-quantum 0.18728β log2 β − 1.0192β + 16.1, hybrid, real cost of memory.

• Quantum 0.265β, non-hybrid, free memory. The improvement from 0.292 to 0.265
relies on quantum random access to memory, and there is no known speedup in a
realistic model.

• Quantum 0.265β, hybrid, free memory.

• Quantum 0.396β, hybrid, real cost of memory.

• Quantum (0.18728β log2 β − 1.0192β + 16.1)/2, non-hybrid, real cost of memory. This

57

is another low-memory algorithm.

• Quantum (0.18728β log2 β − 1.0192β + 16.1)/2, hybrid, free memory.

• Quantum (0.18728β log2 β − 1.0192β + 16.1)/2, hybrid, real cost of memory.

Hybrid attack estimates are more difficult to compute than non-hybrid attack estimates:
there are more parameters (especially in the non-quantum case), and the formulas are more
complicated. We use the heuristic beta-distribution formula from [97] to compute block sizes,
but for the moment we assume collision probability 1 (underestimating security) rather than
using the collision-probability formula from [97].

To simplify near-future comparisons, we use only “Core” estimates (one SVP call), even
though these underestimate security. We also exclude 0.292β + 16.4, 0.292β + log2 β, etc.:
these minor variants distract attention from potentially much larger problems with the main
term.

We also exclude the formula 0.000784β2 + · · · from [53]. As noted above, this formula is close
to the 0.18728β log2 β + · · · formula throughout the entire range of cryptographic interest
(up through 256 bits of security), and it is not clear which formula has larger errors in this
range; including both formulas does not seem to add any value. The quadratic formula
was pushed far beyond the cryptographic range in [4] (primarily because [4] ignored hybrid
attacks, which use smaller block sizes), turning the growth of the formula into a distraction
for the reader, so we opt for the 0.18728β log2 β + · · · formula.

All of the quantum speedups are Grover searches, or generalizations such as amplitude
amplification. The speedup factor is thus limited by the real time available to the attacker,
compared to the time required for each iteration of the search. More precise cost estimates
require evaluating the number of qubits, number of qubit operations, and latency for each
iteration, along with the general costs of quantum computation.

7 Expected strength (2.B.4) in general

Expanded and updated for round 2.

7.1 Security definitions

Streamlined NTRU Prime and NTRU LPRime are both designed for IND-CCA2 security.

It is possible to save time, especially in decapsulation, by abandoning protection against
chosen-ciphertext attacks. This submission intentionally avoids providing any such options.
It is not clear that the speedup is relevant to users (see Section 5.4), whereas there is a clear
risk that providing options vulnerable to chosen-ciphertext attacks will lead to deployment
of those options in scenarios that turn out to allow such attacks.

Internals. Streamlined NTRU Prime Core, NTRU LPRime Core, and NTRU LPRime

58

Expand are designed for OW-Passive security,5 i.e., one-wayness against passive attacks.
OW-Passive security means that it is difficult to find an input (generated uniformly at ran-
dom) given a public key (generated by the key-generation procedure) and the corresponding
ciphertext (generated by encrypting the input).

We emphasize that OW-Passive security is not adequate for applications. Streamlined NTRU
Prime Core, NTRU LPRime Core, and NTRU LPRime Expand are internal modules that
are not meant to be exposed to users. However, these modules have the advantage of being
relatively simple targets for cryptanalysis. These are also useful targets to consider, since
OW-Passive security of Streamlined NTRU Prime Core and NTRU LPRime Expand tightly
implies security of the complete KEMs against ROM IND-CCA2 attacks.

Malleability. Lattice-based encryption has various symmetries, analogous to well-known
ECC symmetries. For example, if c = Round(hr) is a Rounded Quotient NTRU ciphertext
for r under public key h, then −c = Round(−hr) is a Rounded Quotient NTRU ciphertext
for r under public key −h. Furthermore, as in ECC, it is natural for software to decode
multiple strings to the same ciphertext and to decode multiple strings to the same public
key: e.g., allowing q as a synonym for 0.

Shoup [89] refers to equivalent encodings of ciphertexts as “benign malleability”. Benign
malleability of ciphertexts violates IND-CCA2 if ciphertexts are defined as strings, but does
not violate IND-CCA2 if ciphertexts are defined as the mathematical objects produced by
decoding. Benign malleability of public keys does not violate IND-CCA2 either way, and
symmetries such as (c, h)↔ (−c,−h) do not violate IND-CCA2 either way.

The standard argument for allowing equivalent encodings and symmetries is that (1) it is
easy to build protocols where these are not problems, (2) ignoring these issues simplifies
the primitives, and (3) the literature has not settled upon a definition of what primitives
should be trying to accomplish, beyond IND-CCA2. The standard argument for prohibiting
equivalent encodings and symmetries—even without a clear definition of the goal—is that (1)
people sometimes build protocols where these are problems and (2) primitives can protect
at least some of these protocols without much extra cost.

To ensure IND-CCA2 security with ciphertexts defined as strings, we reencode the new
ciphertext produced during decapsulation and compare to the original ciphertext. However,
this reencoding step does nothing to prevent public-key malleability. We also note that there
is a risk of implementations skipping the reencoding step and merely comparing unencoded
ciphertexts; test suites that include invalid ciphertexts will not necessarily include enough
forms of malleability.6

After considering the costs (in performance and in complexity), we have decided to hash
the ciphertext string and the public-key string into our session key. This hashing enforces

5OW-Passive security is typically called “OW-CPA” security, but there are no attacker-chosen plaintexts
in the definition.

6A single test of a modified encoding is enough if the encoding is decoded to the original ciphertext:
skipping the reencoding step will produce the original session key, failing the test. However, if the modification
changes the decoder output (e.g., if q is not reduced to 0), then skipping the reencoding step will pass the
test, and further tests are required.

59

unique encodings: any modification to either string will produce an unrelated session key.
This hashing should also rule out other symmetries. We caution reviewers, however, that
the security consequences of this hashing need to be formalized and proven, and that it is
safer for protocols to rely on simpler promises from primitives.

Multi-target attacks. We recommend handling multi-target attacks by aiming for a very
high single-target security level, and then relying on the fact that T -target attacks gain at
most a factor T . This approach is simple and effective, and is not much more expensive than
merely stopping single-target attacks.

A different approach is to try to eliminate the gain from T -target attacks—or, if this is not
possible, to at least reduce the gain below a factor T . This approach complicates the entire
attack surface. For every single-target attack, the reviewer is forced to ask how much more
effective multi-target attacks can be. Occasionally the literature convincingly answers this
question, but usually it does not.

It is conceivable that our hashing of the public key (see above) makes multi-target attacks
more difficult than they otherwise would be. For example, consider an attacker who guesses
many inputs, computes the corresponding 256-bit confirmations, and scans many ciphertexts,
searching for these confirmations. The public key is hashed into the confirmation, so this
attack is limited to ciphertexts for a particular key, limiting the total number of targets.7

On the other hand, this attack was already so expensive as to be (1) uninteresting and (2)
unlikely to be the most effective multi-target attack against the complete system.

It is easy to argue that various 256-bit quantities are overkill, and that we could safely
truncate to smaller sizes. However, the maximum possible savings are only a small fraction
of our key sizes and ciphertext sizes. Consistently using 256 bits simplifies security review.

7.2 Quantitative security and rationale

Our general strategy for evaluating and selecting parameter sets is as follows:

• Take a broad initial collection of parameter sets.

• Compute the estimated performance and estimated security for each parameter set.

• Restrict attention to parameter sets offering nearly optimal tradeoffs between estimated
performance and estimated security.

• Choose a performance requirement, and restrict attention to parameter sets meeting
this requirement.

• Take the parameter set with the highest estimated security.

As the performance requirement varies, the parameter sets that can be produced by this

7The attack still benefits from the number of ciphertexts encrypted to one key. For comparison, encrypting
each guessed input and comparing to all the ciphertexts has the same benefit, but the encryption is somewhat
more expensive than hashing. The communication costs in either version of the attack can be reduced;
see [73].

60

procedure are not all possible Pareto-optimal parameter sets. The third step imposes a
restriction stronger than Pareto-optimality. By making “nearly” sufficiently stringent, one
can limit attention to, e.g., only 10 parameter sets with estimated security between 264 and
2256. This type of limitation was already used in, e.g., [17], and provides a principled way to
reduce concerns about an attacker potentially choosing parameters from a large set to target
a secret weakness. See generally [20].

Initial collection of parameter sets. Our latest scans are through all primes p, q with
256 < p < 1024; p < q < 16p; 512 ≤ p log256 q ≤ 2048; q mod 6 = 1; and xp − x − 1
irreducible in (Z/q)[x].

For each (p, q), we take the maximum possible w for Streamlined NTRU Prime so that
there are no decryption failures according to Theorem 3. Later we return to the question of
whether this choice of w is optimal.

In the end we reuse the same (p, q) for NTRU LPRime, with smaller w as required for NTRU
LPRime. This reuse has obvious advantages, and we have not found significant differences
between optimizing (p, q) for Streamlined NTRU Prime and optimizing (p, q) for NTRU
LPRime.

Estimated performance. For a performance metric we use p log2 q, a simple lower bound
on the number of bits in a Streamlined NTRU Prime public key. The actual number of bits
is slightly more than this, depending on the details of how elements of R/q are encoded.
Another possibility is to use ciphertext size instead of public-key size, or the sum of the two
sizes; this makes smaller ratios q/p look marginally better.

Yet another possibility is to take a combination of bytes and cycles (estimated or measured).
See Section 5.4.

Tradeoffs. It is easiest to see tradeoffs graphically, so we have drawn many graphs with
estimated performance on the x-axis and estimated security on the y-axis, as in [19, attach-
ment] and [85]. The main reason that there are many graphs is that there are many different
ways to estimate security against known attacks; see Section 6.

As one example of a previous graph for a particular security estimate, [85, Figure 12] com-
pares performance (the total of public-key size and ciphertext size) to pre-quantum security
against known hybrid attacks, assuming BKZ-β cost exponent 0.18728β log2 β − 1.0192β +
16.1 and assuming free memory access. The graph clearly shows the impact of four different
weight fractions w/p:

• Weight fractions 0.375 and 0.5 give the best tradeoffs, with 0.5 marginally better for
extremely high security levels and 0.375 marginally better for lower security levels.

• Weight fraction 0.6 is noticeably worse, and weight fraction 0.666 . . . is even worse.

For comparison, [85, Figure 11] uses BKZ-β cost exponent 0.292β and ignores hybrid attacks.
In this graph, weight 0.375 is clearly better than weight 0.5.

The underlying reason for this discrepancy is as follows. Large weights force a large q and
thus larger sizes, so there is an obvious benefit of using smaller weights. On the other hand,

61

reducing the weight creates more and more benefit for hybrid attacks, and eventually this
turns out to be more important. A moderate weight fraction turns out to be optimum. If
hybrid attacks are ignored then low weights produce less benefit for the attacker, and the
optimum weight fraction is smaller.

We see no justification for ignoring hybrid attacks. On the other hand, there are at least
three arguments that the optimal weight fraction against known attacks is smaller than the
optimal weight fraction in [85, Figure 12]:

• Accounting for the real cost of memory makes meet-in-the-middle attacks more expen-
sive, reducing the benefit of hybrid attacks. Compare our Figure 4 to Figure 5.

• Switching from 0.18728β log2 β − 1.0192β + 16.1 to 0.396β improves the non-hybrid
baseline, further limiting the benefit of hybrid attacks. See Figure 7.

• In the quantum setting, quantum hybrid attacks work in low memory, but quantum
enumeration again improves the non-hybrid baseline, again limiting the benefit of hy-
brid attacks. See Figure 9.

Our graphs make clear that taking weight fraction 0.25 or smaller is noticeably suboptimal
for the third setting, and that taking weight fraction 0.5 or larger is noticeably suboptimal
for the second setting. We restrict attention to parameters with a weight fraction between
0.25 and 0.5.

Schanck in [85] speculates that “improved combinatorial attacks” will lead to an optimal
weight fraction between 0.5 and 0.666 . . ., meaning that smaller choices will turn out to
damage security at any particular level of performance. One can alternatively speculate that
improvements in BKZ-β will have the opposite effect, meaning that larger choices will turn
out to damage security at any particular level of performance. Past improvements have been
in both of these directions, and there is no way to simultaneously avoid both risks.

Density of the parameter space. As our graphs illustrate, the NTRU Prime parameter
space provides many closely spaced parameter options. We could easily provide an even closer
spacing, for example by allowing more polynomials with small coefficients and maximum-
size Galois group. Our general parameter-selection methodology would then impose narrower
limits on the weight fraction, bringing the fraction even closer to its optimal value, to focus
on a few particularly attractive parameter sets.

There is, however, a difficulty here: different security estimates do not agree on precisely
what the optimal value is. Slightly increasing security to its optimum for one estimate means
slightly decreasing security for another estimate. The resulting parameter sets would not
be robust against variations in the current security estimates (never mind the likelihood of
future advances in attacks against lattice-based cryptography). Our current parameter space
gives us a much more robust parameter selection; see below.

The choice of w. We return to the question mentioned earlier of whether w should be
chosen as large as possible for each (p, q).

Analyses generally indicate that larger weights are harder to find, with the following excep-

62

tion: taking w/p larger than 2/3 reduces the number of possible keys. This makes simple
meet-in-the-middle attacks faster for w/p > 2/3. The same effect speeds up various esti-
mates for hybrid attacks if w/p is close enough to 1. For example, for (p, q) = (619, 9679),
some of our estimates say that w = 604 has slightly less security than smaller values of w.

This phenomenon has no effect on our parameter selection. The cases where w is reduced
for better estimated security still have w ≥ 2/3, and have worse size-security tradeoffs than
parameter sets where the maximum w is below 2/3. For simplicity our parameter definitions
prohibit w/p > 2/3, although we have included w/p > 2/3 in our graphs.

Choice of performance requirement. Consider the problem of fitting a client’s public
key into a single Internet packet. This allows a server to immediately set up a cryptographic
session, encapsulating a session key in its response packet, without having to buffer any data;
such buffers are a traditional target for denial-of-service attacks.

IPv6 guarantees that a 1280-byte packet will be transmitted successfully (while measure-
ments such as [94] and [93] indicate that slightly larger packets often encounter failures), so
it is natural to set 1280 bytes as a packet-size limit. This does not mean that the key-size
limit should be as large as 1280 bytes. Part of the space in a packet is consumed by overhead,
and the amount of overhead depends on other protocol details. For example, a minimal IPv6
header consumes 40 bytes (as opposed to 20 bytes for IPv4); a UDP header consumes 8 bytes;
protocol designers often include 32 bytes for an ECC key; protocol designers often include
a connection identifier; etc. Leaving some room below 1280 bytes provides flexibility for the
protocol designer.

We rank (p, q, w) by estimated security, subject to requiring 0.25 ≤ w/p ≤ 0.5 and
p log256 q ≤ 1280. The top three results are the following:

• (823, 4513, 282), with w/p ≈ 0.34 and p log256 q ≈ 1248.89; 31 bytes of flexibility
(assuming space-optimal encoding into bytes).

• (787, 4243, 265), with w/p ≈ 0.34 and p log256 q ≈ 1185.50; 94 bytes of flexibility.

• (761, 4591, 286), with w/p ≈ 0.38 and p log256 q ≈ 1157.16; 122 bytes of flexibility.

The ordering of these three results is consistent across all 13 security estimates in our com-
putations, except that the second and third results are exchanged in one ranking. Note
that there is a more important impact of the allowed range of weight fractions: the top two
results would have disappeared if we had required w ≥ b3p/8c, as in [85]. We have selected
the (761, 4591, 286) parameter set, with 122 bytes of flexibility. In our round-1 submission
we used some of this flexibility to accommodate a somewhat less space-efficient encoding of
public keys; we are now using a more space-efficient encoding.

Ciphertexts for Streamlined NTRU Prime are smaller than public keys. If the public key
from the client fits into a packet then the ciphertext from the server will also fit into a packet
(even if it is accompanied by, e.g., a 32-byte cookie with a 16-byte authenticator). The same
choices of p and q also give the application the option of deploying NTRU LPRime, where
the sizes of public key and ciphertext are approximately reversed.

63

Beyond this parameter set, NIST has requested specification of additional parameter sets
for NTRU Prime. It is straightforward to follow the same methodology to generate further
parameter sets. We have generated a smaller parameter set from a tighter performance
requirement, and a larger parameter set from a looser performance requirement, as explained
below.

A tighter performance requirement. Consider the following problem. An application
deploys a code-based encryption system, Classic McEliece, with 1MB public keys. The
application cannot afford to frequently transmit such large public keys, so the application
also deploys NTRU Prime for forward secrecy. For efficiency, the application uses a single
1280-byte IPv6 packet in each direction to initiate session keys for both systems, rather than
imposing the delay of an extra round trip to first establish a session key for one system
and then establish a session key for the other. The client begins with the server’s long-term
Classic McEliece public key, and uses this public key to encrypt an ephemeral NTRU Prime
public key to the server. The server’s response establishes an NTRU Prime session key.

In more detail, the client sends a packet containing a 226-byte Classic McEliece ciphertext.
This ciphertext establishes a session key. The client uses this session key to encrypt an
ephemeral NTRU Prime public key; the ciphertext is also included in this packet. The en-
crypted key also needs to be authenticated; the conventional modular option at this point is
to use 16 bytes for a high-security authenticator under the same session key. A space-saving
alternative is to observe that plaintext confirmation can be hashed together with additional
data (replace, e.g., a 32-byte confirmation C with a 32-byte H(C,D)) to implicitly authen-
ticate the additional data; the Classic McEliece ciphertext includes plaintext confirmation.

To summarize, the NTRU Prime public key here must fit into 1280− 226 = 1054 bytes, and
below this we want to leave extra space for flexibility—for example, 48 bytes to accommodate
IPv6+UDP header information.

Ranking parameters with 0.25 ≤ w/p ≤ 0.5 and p log256 q ≤ 1054 consistently produces the
following top two results:

• (653, 4621, 288), with w/p ≈ 0.44 and p log256 q ≈ 993.702; 60 bytes of flexibility.

• (647, 3559, 222), with w/p ≈ 0.34 and p log256 q ≈ 954.103; 99 bytes of flexibility.

We select (653, 4621, 288).

A looser performance requirement. Internet packets are normally transmitted through
links that actually allow 1500-byte packets. The reason for the 1280-byte packet-size limit in
IPv6 (and the reason that slightly larger packets often encounter failures) is that transmitting
IPv6 packets through non-IPv6 networks often ends up wrapping each packet in a non-
cryptographic tunnel, consuming extra space in each packet. This also occurs to a smaller
extent with IPv4.

Imagine that, in the long term, tunnel overhead is systematically reduced below 64 bytes,
allowing 1436-byte packets to be safely transmitted through the Internet. Ranking parameter
sets with p log256 q ≤ 1436 gives the following top two candidates:

64

pre-quantum post-quantum
BKZ model enum sieving enum sieving

memory cost free real free real free real free real
ignoring hybrid 292 292 129 174 146 146 117 174

kem/sntrup653
including hybrid 197 239 129 174 139 139 117 160
ignoring hybrid 296 296 130 176 148 148 118 176

kem/ntrulpr653
including hybrid 195 236 130 176 142 142 118 160
ignoring hybrid 368 368 153 208 185 185 139 208

kem/sntrup761
including hybrid 230 277 153 208 169 169 139 180
ignoring hybrid 364 364 155 210 187 187 140 210

kem/ntrulpr761
including hybrid 222 275 155 210 168 168 140 185
ignoring hybrid 437 437 175 237 220 220 159 237

kem/sntrup857
including hybrid 262 325 175 237 196 196 159 208
ignoring hybrid 429 429 176 239 222 222 160 239

kem/ntrulpr857
including hybrid 256 318 176 239 196 196 160 209

Table 2: For each selected parameter set, various estimates of security levels against known
attacks. Warnings: Memory is not free. Attackers will not ignore hybrid attacks if those are
the most cost-effective attacks. Both “enum” and “sieving” use questionable formulas. See
Section 6 for further caveats regarding these numbers.

• (857, 5167, 322), with w/p ≈ 0.38 and p log256 q ≈ 1321.40; 114 bytes of flexibility.

• (863, 4111, 256), with w/p ≈ 0.30 and p log256 q ≈ 1295.07; 140 bytes of flexibility.

These candidates do not have a consistent ranking across security estimates. Estimates
that ignore hybrid attacks usually rank the 863 parameter set higher, while estimates that
take hybrid attacks into account usually rank the 857 parameter set higher. Estimates
that account for hybrid attacks and for the real cost of memory consistently rank the 857
parameter set higher. We thus select the (857, 5167, 322) parameter set. The same parameter
set was also noted by Schanck in [85].

Table of estimates for selected parameter sets. See Table 2. To help the reader verify
this table, and to provide a foundation for further improvements in the estimates, we are
posting a script [22] that computes all 16 estimates. The script takes a total of 3 + 5 + 7
minutes on one laptop core for our three Streamlined NTRU Prime parameter sets. It takes
several times longer for our three NTRU LPRime parameter sets; recall that Product NTRU
gives the attacker more flexibility than Quotient NTRU in choosing lattice ranks. The table
rounds each estimate down to the nearest integer.

As noted in Section 6.11, there are 13 non-redundant estimates: “pre-quantum enum
free/real ignoring hybrid” are the same, “post-quantum enum free/real ignoring hybrid”
are the same, and “pre/post-quantum sieving real ignoring hybrid” are the same. More of
the estimates match for our selected parameter sets: hybrid attacks reduce the estimates for

65

“enum” and for “post-quantum sieving real” but usually not for other “sieving” columns.

Some numbers are included in the table primarily for comparability to [4]. The largest
numbers are for “pre-quantum enum ignoring hybrid”, but those numbers are superseded
by hybrid attacks. The smallest numbers are for “post-quantum sieving free”, but those
numbers ignore the cost of memory and, even more extreme, the cost of QRAM.

We again emphasize that there are many ways that all of the estimates are, or could be,
overestimating the cost of known attacks, and many ways that the estimates are, or could
be, underestimating the cost of known attacks. For example, the Streamlined NTRU Prime
estimates seem to overcount rotations; see Section 6.5. This particular effect cannot make
more than about 10 bits of difference in our security estimates, but other effects could be
larger, and there are many effects that need further study. See generally Section 6.

Looking beyond known attacks. We also emphasize that advances in attacks could
reduce costs below the actual costs of known attacks (which in turn could be above or
below current estimates of the costs of known attacks). One can optimistically hope that
advances will merely eliminate existing overheads—for example, a variant of sieving with
lower communication costs would reduce the gap between “real” and “free”—but what is
much more worrisome is the possibility of larger breakthroughs.

NIST has written that “submitters of algorithms where the complexity of the best known
attack has recently decreased significantly, or is otherwise poorly understood, should be
especially conservative” in assigning cryptosystems to categories. Clearly the precondition
applies to lattice-based cryptography in general, but it is not at all clear how to quantify
“especially conservative”. We originally assigned our (761, 4591) parameter sets to NIST’s
Category 5, while various other proposals assigned similar parameter sets to NIST’s Category
3; we have decided to reassign this parameter set to Category 3 to avoid spending time on
disputes about what “especially conservative” means. To prevent misunderstanding of this
change in category, we emphasize that the only speedups in attacks against NTRU Prime
since its original publication have been speedups applicable to a much wider range of lattice-
based cryptosystems, whereas the opposite is not true: some other lattice-based systems
have suffered from serious attacks that have not affected NTRU Prime. Quantitatively, the
smallest number listed in Table 2 for (761, 4591) is 2139 quantum “operations”, while a Grover
attack against AES-256 would use just 2128 quantum “operations”.

8 Expected strength (2.B.4) for each parameter set

8.1 Parameter set kem/sntrup653

Category 2.

66

8.2 Parameter set kem/sntrup761

Category 3.

8.3 Parameter set kem/sntrup857

Category 4.

8.4 Parameter set kem/ntrulpr653

Category 2.

8.5 Parameter set kem/ntrulpr761

Category 3.

8.6 Parameter set kem/ntrulpr857

Category 4.

9 Advantages and limitations (2.B.6)

There are several proposals of lattice-based cryptosystems that appear to provide high se-
curity with keys and ciphertexts fitting into just a few kilobytes. This proposal is designed
to have the smallest attack surface, minimizing the number of avenues available to crypt-
analysts. Some recent attacks against lattice-based cryptosystems rely on homomorphisms
eliminated by this proposal.

At the same time this proposal provides unusually small sizes and excellent speed. One of
the reasons for this performance is that this proposal provides the flexibility to target any
desired lattice dimension rather precisely, without the “jumps” that appear in most propos-
als. Future advances in understanding the exact security level of lattice-based cryptography
will allow this proposal to be tuned accordingly.

Beware, however, that there are other recent attacks against lattice-based cryptography,
including impressive advances against SVP. As noted before, the security of lattice-based
cryptography is not well understood. This is a general limitation of lattice-based cryptogra-
phy. The same limitation is shared by many—but not all—post-quantum proposals.

67

Additional comments for round 2. Are users going to end up deploying a post-quantum
system that turns out to be devastatingly insecure, allowing feasible attacks? Quite possibly,
yes. Experience suggests that the most likely way for this to happen is as follows:

• as a direct result of design decisions, security review of the post-quantum system will
be much more complicated than necessary;

• as a result, the limited human resources available for security review will run out of
time to seriously review everything;

• as a result, serious vulnerabilities will be missed simply because nobody ever looked
at the relevant weakness in the attack surface.

As an analogy, OCB2 was broken in 2018, 14 years after a security “proof” at Asiacrypt
and 9 years after ISO standardization. The attacks are simple and fast, but this does not
mean that they were easy to find: OCB2 is only one of many cryptographic standards, and it
has many interacting components that needed attack analysis. Compared to serious security
review for OCB2, serious security review for post-quantum systems is another big step up
in difficulty, further increasing the risk of security disasters.

The breadth of the attack surface in lattice-based cryptography is illustrated by new attacks
published after the beginning of round 1, such as the following:

• Laarhoven and Mariano [64] saved “between a factor 20 to 40 in the time complexity
for SVP”.

• Bai, Stehlé, and Wen [13] introduced a new BKZ variant that “produces bases of better
quality” for the “same cost assigned to the underlying SVP-solver”.

• Aono, Nguyen, and Shen [11] adapted “recent quantum tree algorithms by Montanaro
and Ambainis–Kokainis” to the context of enumeration.

• Anvers, Vercauteren, and Verbauwhede [41] showed that “an attacker can significantly
reduce the security of (Ring/Module)-LWE/LWR based schemes that have a relatively
high failure rate”.

• Another paper by Anvers, Vercauteren, and Verbauwhede [40] showed that, for LAC-
128, “the failure rate is 248 times bigger than estimated under the assumption of
independence”.

• Hamburg estimated that an initial design of Round5, at its highest claimed security
level, actually had failure rate 2−55, presumably allowing attacks with a number of
ciphertexts only moderately above 255.

• Pellet-Mary, Hanrot, and Stehlé [76] broke through the previously claimed half-
exponential approximation-factor barrier for number-theoretic attacks against Ideal-
SVP. (The attack of [76] relies on an exponential-time precomputation involving the
S-unit lattice; but the attack from Campbell–Groves–Shepherd [32] has a much faster
precomputation for cyclotomic fields in the case S = {}, so perhaps there is a similarly
fast precomputation for cyclotomic fields for more general S.)

A security reviewer needs to absorb a tremendous amount of recent material simply to

68

evaluate the security of lattice-based cryptography against known attacks, and then needs
to evaluate the risks of further attacks. Given the number of different attack avenues and
the volume of recent progress, it is not reasonable to think that all of the attack avenues
have been adequately explored.

For comparison, it is much easier to understand the state-of-the-art attacks against, e.g., the
Classic McEliece system. However, Classic McEliece does not work for applications where a
public key needs to fit into (e.g.) a single 1280-byte IPv6 packet.

Every small post-quantum proposal is risky. Every lattice-based proposal forces security
reviewers to consider the complicated, unstable picture of general lattice attacks. But most
lattice-based proposals also force security reviewers to worry about, e.g., decryption failures.
(Were failure probabilities calculated correctly? How do the calculations take account of
error correction? Can attackers find ciphertexts more likely to fail? How does this interact
with quantum computation? Do security proofs correctly account for failures?) We are
aware of nine round-1 submissions without decryption failures:

• BIG QUAKE (code-based, not in round 2)

• Classic McEliece (code-based)

• DAGS (code-based, not in round 2)

• NTRU-HRSS-KEM (lattice-based)

• NTRU Prime (lattice-based)

• NTS-KEM (code-based)

• Odd Manhattan (lattice-based, not in round 2)

• pqRSA (factoring-based, not in round 2)

• RQC (code-based)

Only two of these are lattice-based submissions that progressed to round 2. More submissions
could adjust parameters to avoid decryption failures, but the broader point is that this
submission was systematically designed from the outset to simplify the task of security
reviewers—subject to the requirement of being a small lattice-based system.

Most lattice-based proposals rely on number fields with small Galois groups, giving tools
to the attacker that are not necessary for small lattice-based systems. Five years ago these
tools broke the usual cyclotomic case of Gentry’s original FHE system at STOC 2009, as
noted earlier. Followup work has used the same tools for state-of-the-art attacks against a
wider range of lattice problems. Security reviewers are forced to ask whether the same tools
will damage the security of, e.g., the small-Galois-group case of Ring-LWE.

There were eight round-1 lattice-based encryption proposals that do not rely on number fields
with small Galois groups. (Three Bears is sometimes counted as a lattice submission, and
the number field it uses is not a cyclotomic field, but the number field still has a small Galois
group, so Three Bears is not in this list.) Here is one illustrative example of a parameter set
from each proposal, showing public-key size + ciphertext size:

69

• Streamlined NTRU Prime 4591761: 1218 bytes + 1047 bytes.

• LOTUS 128 (not in round 2): 658944 bytes + 1144 bytes.

• Titanium CCA lite (not in round 2): 14720 bytes + 3008 bytes.

• Round2 n1 l1: 3455 bytes + 4837 bytes.

• Frodo 640: 9616 bytes + 9736 bytes.

• EMBLEM II.c (not in round 2): 10016 bytes + 14792 bytes.

• Lizard N663 (not in round 2): 1390592 bytes + 10896 bytes.

• Odd Manhattan 128 (not in round 2): 1626240 bytes + 180224 bytes.

NIST has advocated diversity to protect against the possibility that “a single type of attack
will eliminate the bulk of the candidates remaining in the standardization process”. If small
Galois groups are broken then only three lattice-based encryption proposals will survive, and
NTRU Prime will be the only survivor that can fit a public key into an Internet packet.

If all number fields are broken without regard to the Galois structure, then every small
lattice-based proposal is broken, and the only remaining lattice-based proposals are much
larger “unstructured” proposals such as Frodo. NTRU Prime starts from the requirement
of being a small lattice-based system, and then reduces the attack surface subject to this
requirement.

References

[1] Carlisle Adams and Jan Camenisch, editors. Selected Areas in Cryptography - SAC 2017
- 24th International Conference, Ottawa, ON, Canada, August 16-18, 2017, Revised
Selected Papers, volume 10719 of Lecture Notes in Computer Science. Springer, 2018.

[2] Divesh Aggarwal, Daniel Dadush, Oded Regev, and Noah Stephens-Davidowitz. Solving
the shortest vector problem in 2n time using discrete Gaussian sampling: Extended
abstract. In Rocco A. Servedio and Ronitt Rubinfeld, editors, Proceedings of the Forty-
Seventh Annual ACM on Symposium on Theory of Computing, STOC 2015, Portland,
OR, USA, June 14-17, 2015, pages 733–742. ACM, 2015. http://arxiv.org/abs/

1412.7994.

[3] Martin R. Albrecht, Carlos Cid, Jean-Charles Faugère, Robert Fitzpatrick, and Ludovic
Perret. Algebraic algorithms for LWE problems. ACM Comm. Computer Algebra,
49(2):62, 2015. https://eprint.iacr.org/2014/1018.

[4] Martin R. Albrecht, Benjamin R. Curtis, Amit Deo, Alex Davidson, Rachel Player,
Eamonn W. Postlethwaite, Fernando Virdia, and Thomas Wunderer. Estimate all the
{LWE, NTRU} schemes! In Dario Catalano and Roberto De Prisco, editors, Security
and Cryptography for Networks - 11th International Conference, SCN 2018, Amalfi,
Italy, September 5-7, 2018, Proceedings, volume 11035 of Lecture Notes in Computer
Science, pages 351–367. Springer, 2018. https://eprint.iacr.org/2018/331.

70

http://arxiv.org/abs/1412.7994
http://arxiv.org/abs/1412.7994
https://eprint.iacr.org/2014/1018
https://eprint.iacr.org/2018/331

[5] Martin R. Albrecht, Léo Ducas, Gottfried Herold, Elena Kirshanova, Eamonn W.
Postlethwaite, and Marc Stevens. The general sieve kernel and new records in lattice
reduction, 2019. https://eprint.iacr.org/2019/089.

[6] Martin R. Albrecht, Florian Göpfert, Fernando Virdia, and Thomas Wunderer. Re-
visiting the expected cost of solving uSVP and applications to LWE. In Tsuyoshi
Takagi and Thomas Peyrin, editors, Advances in Cryptology - ASIACRYPT 2017 -
23rd International Conference on the Theory and Applications of Cryptology and In-
formation Security, Hong Kong, China, December 3-7, 2017, Proceedings, Part I,
volume 10624 of Lecture Notes in Computer Science, pages 297–322. Springer, 2017.
https://eprint.iacr.org/2017/815.

[7] Erdem Alkim, Léo Ducas, Thomas Pöppelmann, and Peter Schwabe. Post-quantum key
exchange - A new hope. In Thorsten Holz and Stefan Savage, editors, 25th USENIX
Security Symposium, USENIX Security 16, Austin, TX, USA, August 10-12, 2016,
pages 327–343. USENIX Association, 2016. https://eprint.iacr.org/2015/1092.

[8] Jacob Alperin-Sheriff and Daniel Apon. Dimension-preserving reductions from LWE to
LWR. IACR Cryptology ePrint Archive, 2016:589, 2016. https://eprint.iacr.org/

2016/589.

[9] Joël Alwen, Stephan Krenn, Krzysztof Pietrzak, and Daniel Wichs. Learning with
rounding, revisited – new reduction, properties and applications. In Canetti and Garay
[33], pages 57–74. https://eprint.iacr.org/2013/098.

[10] Yoshinori Aono and Phong Q. Nguyen. Random sampling revisited: Lattice enumera-
tion with discrete pruning. In Jean-Sébastien Coron and Jesper Buus Nielsen, editors,
Advances in Cryptology - EUROCRYPT 2017 - 36th Annual International Conference
on the Theory and Applications of Cryptographic Techniques, Paris, France, April 30 -
May 4, 2017, Proceedings, Part II, volume 10211 of Lecture Notes in Computer Science,
pages 65–102, 2017. https://eprint.iacr.org/2017/155.

[11] Yoshinori Aono, Phong Q. Nguyen, and Yixin Shen. Quantum lattice enumeration
and tweaking discrete pruning. In Peyrin and Galbraith [78], pages 405–434. https:

//eprint.iacr.org/2018/546.

[12] Sanjeev Arora and Rong Ge. New algorithms for learning in presence of errors. In
Luca Aceto, Monika Henzinger, and Jiŕı Sgall, editors, Automata, Languages and Pro-
gramming - 38th International Colloquium, ICALP 2011, Zurich, Switzerland, July 4-8,
2011, Proceedings, Part I, volume 6755 of Lecture Notes in Computer Science, pages
403–415. Springer, 2011. https://users.cs.duke.edu/~rongge/LPSN.pdf.

[13] Shi Bai, Damien Stehlé, and Weiqiang Wen. Measuring, simulating and exploiting the
head concavity phenomenon in BKZ. In Peyrin and Galbraith [78], pages 369–404.
https://eprint.iacr.org/2018/856.

[14] Abhishek Banerjee, Chris Peikert, and Alon Rosen. Pseudorandom functions and lat-
tices. In David Pointcheval and Thomas Johansson, editors, Advances in Cryptology -

71

https://eprint.iacr.org/2019/089
https://eprint.iacr.org/2017/815
https://eprint.iacr.org/2015/1092
https://eprint.iacr.org/2016/589
https://eprint.iacr.org/2016/589
https://eprint.iacr.org/2013/098
https://eprint.iacr.org/2017/155
https://eprint.iacr.org/2018/546
https://eprint.iacr.org/2018/546
https://users.cs.duke.edu/~rongge/LPSN.pdf
https://eprint.iacr.org/2018/856

EUROCRYPT 2012 - 31st Annual International Conference on the Theory and Appli-
cations of Cryptographic Techniques, Cambridge, UK, April 15-19, 2012. Proceedings,
volume 7237 of Lecture Notes in Computer Science, pages 719–737. Springer, 2012.
https://eprint.iacr.org/2011/401.

[15] Jens Bauch, Daniel J. Bernstein, Henry de Valence, Tanja Lange, and Christine van
Vredendaal. Short generators without quantum computers: The case of multiquadratics.
In Coron and Nielsen [37], pages 27–59. https://multiquad.cr.yp.to.

[16] Anja Becker, Léo Ducas, Nicolas Gama, and Thijs Laarhoven. New directions in nearest
neighbor searching with applications to lattice sieving. In Krauthgamer [61], pages 10–
24. https://eprint.iacr.org/2015/1128.

[17] Daniel J. Bernstein. Curve25519: New Diffie-Hellman speed records. In Moti Yung,
Yevgeniy Dodis, Aggelos Kiayias, and Tal Malkin, editors, Public Key Cryptogra-
phy - PKC 2006, 9th International Conference on Theory and Practice of Public-
Key Cryptography, New York, NY, USA, April 24-26, 2006, Proceedings, volume
3958 of Lecture Notes in Computer Science, pages 207–228. Springer, 2006. https:

//cr.yp.to/papers.html#curve25519.

[18] Daniel J. Bernstein. djbsort, 2018. https://sorting.cr.yp.to.

[19] Daniel J. Bernstein. Re: OFFICIAL COMMENT: NTRU Prime, 2018.
https://groups.google.com/a/list.nist.gov/d/msg/pqc-forum/l5IaJTe_pUI/

QKaLZ4uMAAAJ.

[20] Daniel J. Bernstein, Tung Chou, Chitchanok Chuengsatiansup, Andreas Hülsing, Eran
Lambooij, Tanja Lange, Ruben Niederhagen, and Christine van Vredendaal. How to
manipulate curve standards: A white paper for the black hat. In Liqun Chen and
Shin’ichiro Matsuo, editors, Security Standardisation Research - Second International
Conference, SSR 2015, Tokyo, Japan, December 15-16, 2015, Proceedings, volume 9497
of Lecture Notes in Computer Science, pages 109–139. Springer, 2015. https://eprint.
iacr.org/2014/571.

[21] Daniel J. Bernstein, Chitchanok Chuengsatiansup, Tanja Lange, and Christine van Vre-
dendaal. NTRU Prime: Reducing attack surface at low cost. In Adams and Camenisch
[1], pages 235–260. https://eprint.iacr.org/2016/461.

[22] Daniel J. Bernstein, Chitchanok Chuengsatiansup, Tanja Lange, and Christine van
Vredendaal. Script to compute various security estimates, 2019. https://ntruprime.

cr.yp.to/security.html.

[23] Daniel J. Bernstein, Mike Hamburg, Anna Krasnova, and Tanja Lange. Elligator:
elliptic-curve points indistinguishable from uniform random strings. In Ahmad-Reza
Sadeghi, Virgil D. Gligor, and Moti Yung, editors, 2013 ACM SIGSAC Conference on
Computer and Communications Security, CCS’13, Berlin, Germany, November 4-8,
2013, pages 967–980. ACM, 2013. https://eprint.iacr.org/2013/325.

72

https://eprint.iacr.org/2011/401
https://multiquad.cr.yp.to
https://eprint.iacr.org/2015/1128
https://cr.yp.to/papers.html#curve25519
https://cr.yp.to/papers.html#curve25519
https://sorting.cr.yp.to
https://groups.google.com/a/list.nist.gov/d/msg/pqc-forum/l5IaJTe_pUI/QKaLZ4uMAAAJ
https://groups.google.com/a/list.nist.gov/d/msg/pqc-forum/l5IaJTe_pUI/QKaLZ4uMAAAJ
https://eprint.iacr.org/2014/571
https://eprint.iacr.org/2014/571
https://eprint.iacr.org/2016/461
https://ntruprime.cr.yp.to/security.html
https://ntruprime.cr.yp.to/security.html
https://eprint.iacr.org/2013/325

[24] Daniel J. Bernstein and Tanja Lange. Non-uniform cracks in the concrete: The power
of free precomputation. In Kazue Sako and Palash Sarkar, editors, Advances in Cryptol-
ogy - ASIACRYPT 2013 - 19th International Conference on the Theory and Application
of Cryptology and Information Security, Bengaluru, India, December 1-5, 2013, Pro-
ceedings, Part II, volume 8270 of Lecture Notes in Computer Science, pages 321–340.
Springer, 2013. https://cr.yp.to/papers.html#nonuniform.

[25] Daniel J. Bernstein and Edoardo Persichetti. Towards KEM unification, 2018. https:

//eprint.iacr.org/2018/526.

[26] Daniel J. Bernstein and Bo-Yin Yang. Fast constant-time gcd computation and modular
inversion, 2019. https://eprint.iacr.org/2019/266.

[27] Jean-François Biasse and Fang Song. Efficient quantum algorithms for computing class
groups and solving the principal ideal problem in arbitrary degree number fields. In
Krauthgamer [61], pages 893–902. http://fangsong.info/files/pubs/BS_SODA16.

pdf.

[28] Andrej Bogdanov, Siyao Guo, Daniel Masny, Silas Richelson, and Alon Rosen. On the
hardness of learning with rounding over small modulus. In Eyal Kushilevitz and Tal
Malkin, editors, Theory of Cryptography - 13th International Conference, TCC 2016-
A, Tel Aviv, Israel, January 10-13, 2016, Proceedings, Part I, volume 9562 of Lecture
Notes in Computer Science, pages 209–224. Springer, 2016. https://eprint.iacr.

org/2015/769.

[29] Joppe W. Bos, Craig Costello, Léo Ducas, Ilya Mironov, Michael Naehrig, Valeria Niko-
laenko, Ananth Raghunathan, and Douglas Stebila. Frodo: Take off the ring! Practical,
quantum-secure key exchange from LWE. In ACM Conference on Computer and Com-
munications Security, pages 1006–1018. ACM, 2016. https://eprint.iacr.org/2016/
659.

[30] Joppe W. Bos, Craig Costello, Michael Naehrig, and Douglas Stebila. Post-quantum
key exchange for the TLS protocol from the ring learning with errors problem. In IEEE
Symposium on Security and Privacy, pages 553–570. IEEE Computer Society, 2015.
https://eprint.iacr.org/2014/599.

[31] Leon Groot Bruinderink, Andreas Hülsing, Tanja Lange, and Yuval Yarom. Flush,
Gauss, and reload - A cache attack on the BLISS lattice-based signature scheme. In
Benedikt Gierlichs and Axel Y. Poschmann, editors, Cryptographic Hardware and Em-
bedded Systems - CHES 2016 - 18th International Conference, Santa Barbara, CA, USA,
August 17-19, 2016, Proceedings, volume 9813 of Lecture Notes in Computer Science,
pages 323–345. Springer, 2016. https://eprint.iacr.org/2016/300.

[32] Peter Campbell, Michael Groves, and Dan Shepherd. Soliloquy: a cautionary tale,
2014. http://docbox.etsi.org/Workshop/2014/201410_CRYPTO/S07_Systems_and_
Attacks/S07_Groves_Annex.pdf.

73

https://cr.yp.to/papers.html#nonuniform
https://eprint.iacr.org/2018/526
https://eprint.iacr.org/2018/526
https://eprint.iacr.org/2019/266
http://fangsong.info/files/pubs/BS_SODA16.pdf
http://fangsong.info/files/pubs/BS_SODA16.pdf
https://eprint.iacr.org/2015/769
https://eprint.iacr.org/2015/769
https://eprint.iacr.org/2016/659
https://eprint.iacr.org/2016/659
https://eprint.iacr.org/2014/599
https://eprint.iacr.org/2016/300
http://docbox.etsi.org/Workshop/2014/201410_CRYPTO/S07_Systems_and_Attacks/S07_Groves_Annex.pdf
http://docbox.etsi.org/Workshop/2014/201410_CRYPTO/S07_Systems_and_Attacks/S07_Groves_Annex.pdf

[33] Ran Canetti and Juan A. Garay, editors. Advances in Cryptology - CRYPTO 2013
- 33rd Annual Cryptology Conference, Santa Barbara, CA, USA, August 18-22, 2013.
Proceedings, Part I, volume 8042 of Lecture Notes in Computer Science. Springer, 2013.

[34] Hao Chen, Kristin Lauter, and Katherine E. Stange. Vulnerable Galois RLWE families
and improved attacks. IACR Cryptology ePrint Archive, 2016. https://eprint.iacr.
org/2016/193.

[35] Yuanmi Chen. Réduction de réseau et sécurité concrete du chiffrement completement
homomorphe. PhD thesis, Paris 7, 2013.

[36] Yuanmi Chen and Phong Q. Nguyen. BKZ 2.0: Better lattice security estimates. In
Dong Hoon Lee and Xiaoyun Wang, editors, Advances in Cryptology - ASIACRYPT
2011 - 17th International Conference on the Theory and Application of Cryptology and
Information Security, Seoul, South Korea, December 4-8, 2011. Proceedings, volume
7073 of Lecture Notes in Computer Science, pages 1–20. Springer, 2011. https://www.
iacr.org/archive/asiacrypt2011/70730001/70730001.pdf.

[37] Jean-Sébastien Coron and Jesper Buus Nielsen, editors. Advances in Cryptology - EU-
ROCRYPT 2017 - 36th Annual International Conference on the Theory and Applica-
tions of Cryptographic Techniques, Paris, France, April 30 - May 4, 2017, Proceedings,
Part I, volume 10210 of Lecture Notes in Computer Science, 2017.

[38] Ronald Cramer, Léo Ducas, Chris Peikert, and Oded Regev. Recovering short genera-
tors of principal ideals in cyclotomic rings. In Marc Fischlin and Jean-Sébastien Coron,
editors, Advances in Cryptology - EUROCRYPT 2016 - 35th Annual International Con-
ference on the Theory and Applications of Cryptographic Techniques, Vienna, Austria,
May 8-12, 2016, Proceedings, Part II, volume 9666 of Lecture Notes in Computer Sci-
ence, pages 559–585. Springer, 2016. https://eprint.iacr.org/2015/313.

[39] Ronald Cramer, Léo Ducas, and Benjamin Wesolowski. Short Stickelberger class rela-
tions and application to Ideal-SVP. In Jean-Sébastien Coron and Jesper Buus Nielsen,
editors, Advances in Cryptology - EUROCRYPT 2017 - 36th Annual International Con-
ference on the Theory and Applications of Cryptographic Techniques, Paris, France,
April 30 - May 4, 2017, Proceedings, Part I, volume 10210 of Lecture Notes in Com-
puter Science, pages 324–348, 2017. https://eprint.iacr.org/2016/885.

[40] Jan-Pieter D’Anvers, Frederik Vercauteren, and Ingrid Verbauwhede. The impact of
error dependencies on Ring/Mod-LWE/LWR based schemes. IACR Cryptology ePrint
Archive, 2018:1172, 2018. https://eprint.iacr.org/2018/1172.

[41] Jan-Pieter D’Anvers, Frederik Vercauteren, and Ingrid Verbauwhede. On the impact
of decryption failures on the security of LWE/LWR based schemes. IACR Cryptology
ePrint Archive, 2018:1089, 2018. https://eprint.iacr.org/2018/1089.

[42] Alexander W. Dent. A designer’s guide to KEMs. In Kenneth G. Paterson, editor,
Cryptography and Coding, 9th IMA International Conference, Cirencester, UK, Decem-
ber 16-18, 2003, Proceedings, volume 2898 of Lecture Notes in Computer Science, pages
133–151. Springer, 2003. https://eprint.iacr.org/2002/174.

74

https://eprint.iacr.org/2016/193
https://eprint.iacr.org/2016/193
https://www.iacr.org/archive/asiacrypt2011/70730001/70730001.pdf
https://www.iacr.org/archive/asiacrypt2011/70730001/70730001.pdf
https://eprint.iacr.org/2015/313
https://eprint.iacr.org/2016/885
https://eprint.iacr.org/2018/1172
https://eprint.iacr.org/2018/1089
https://eprint.iacr.org/2002/174

[43] Jintai Ding. Solving LWE problem with bounded errors in polynomial time. IACR
Cryptology ePrint Archive, 2010:558, 2010. https://eprint.iacr.org/2010/558.

[44] Léo Ducas, Alain Durmus, Tancrède Lepoint, and Vadim Lyubashevsky. Lattice sig-
natures and bimodal Gaussians. In Canetti and Garay [33], pages 40–56. https:

//eprint.iacr.org/2013/383.

[45] Dave Dunning. Fabrics—why we love them and why we hate them,
2015. https://www.openfabrics.org/images/eventpresos/workshops2015/

DevWorkshop/Tuesday/tuesday_10.pdf.

[46] Kirsten Eisenträger, Sean Hallgren, and Kristin E. Lauter. Weak instances of PLWE. In
Antoine Joux and Amr M. Youssef, editors, Selected Areas in Cryptography - SAC 2014
- 21st International Conference, Montreal, QC, Canada, August 14-15, 2014, Revised
Selected Papers, volume 8781 of Lecture Notes in Computer Science, pages 183–194.
Springer, 2014. https://eprint.iacr.org/2014/784.

[47] Ulrich Fincke and Michael Pohst. Improved methods for calculating vectors of
short length in a lattice, including a complexity analysis. Mathematics of Compu-
tation, 44(170):463–471, 1985. http://www.ams.org/journals/mcom/1985-44-170/

S0025-5718-1985-0777278-8/S0025-5718-1985-0777278-8.pdf.

[48] Nicolas Gama, Phong Q. Nguyen, and Oded Regev. Lattice enumeration using ex-
treme pruning. In Henri Gilbert, editor, Advances in Cryptology - EUROCRYPT
2010, 29th Annual International Conference on the Theory and Applications of Cryp-
tographic Techniques, Monaco / French Riviera, May 30 - June 3, 2010. Proceedings,
volume 6110 of Lecture Notes in Computer Science, pages 257–278. Springer, 2010.
https://www.iacr.org/archive/eurocrypt2010/66320257/66320257.pdf.

[49] Florian Göpfert, Christine van Vredendaal, and Thomas Wunderer. A hybrid lattice
basis reduction and quantum search attack on LWE. In Tanja Lange and Tsuyoshi
Takagi, editors, Post-Quantum Cryptography - 8th International Workshop, PQCrypto
2017, Utrecht, The Netherlands, June 26-28, 2017, Proceedings, volume 10346 of Lecture
Notes in Computer Science, pages 184–202. Springer, 2017. https://eprint.iacr.

org/2017/221.

[50] Qian Guo, Thomas Johansson, and Paul Stankovski. A key recovery attack on MDPC
with CCA security using decoding errors. Cryptology ePrint Archive, Report 2016/858,
2016. https://eprint.iacr.org/2016/858.

[51] Guillaume Hanrot, Xavier Pujol, and Damien Stehlé. Terminating BKZ. IACR Cryp-
tology ePrint Archive, 2011:198, 2011. https://eprint.iacr.org/2011/198.

[52] Philip S. Hirschhorn, Jeffrey Hoffstein, Nick Howgrave-Graham, and William Whyte.
Choosing NTRUEncrypt parameters in light of combined lattice reduction and MITM
approaches. In Michel Abdalla, David Pointcheval, Pierre-Alain Fouque, and Damien
Vergnaud, editors, Applied Cryptography and Network Security, 7th International Con-
ference, ACNS 2009, Paris-Rocquencourt, France, June 2-5, 2009. Proceedings, volume

75

https://eprint.iacr.org/2010/558
https://eprint.iacr.org/2013/383
https://eprint.iacr.org/2013/383
https://www.openfabrics.org/images/eventpresos/workshops2015/DevWorkshop/Tuesday/tuesday_10.pdf
https://www.openfabrics.org/images/eventpresos/workshops2015/DevWorkshop/Tuesday/tuesday_10.pdf
https://eprint.iacr.org/2014/784
http://www.ams.org/journals/mcom/1985-44-170/S0025-5718-1985-0777278-8/S0025-5718-1985-0777278-8.pdf
http://www.ams.org/journals/mcom/1985-44-170/S0025-5718-1985-0777278-8/S0025-5718-1985-0777278-8.pdf
https://www.iacr.org/archive/eurocrypt2010/66320257/66320257.pdf
https://eprint.iacr.org/2017/221
https://eprint.iacr.org/2017/221
https://eprint.iacr.org/2016/858
https://eprint.iacr.org/2011/198

5536 of Lecture Notes in Computer Science, pages 437–455, 2009. https://assets.

securityinnovation.com/static/downloads/NTRU/resources/params.pdf.

[53] Jeffrey Hoffstein, Jill Pipher, John M. Schanck, Joseph H. Silverman, William Whyte,
and Zhenfei Zhang. Choosing parameters for NTRUEncrypt. IACR Cryptology ePrint
Archive, 2015. https://eprint.iacr.org/2015/708.

[54] Jeffrey Hoffstein, Jill Pipher, and Joseph H. Silverman. NTRU: A ring-based public key
cryptosystem. In Joe Buhler, editor, Algorithmic Number Theory, Third International
Symposium, ANTS-III, Portland, Oregon, USA, June 21-25, 1998, Proceedings, volume
1423 of Lecture Notes in Computer Science, pages 267–288. Springer, 1998.

[55] Nick Howgrave-Graham. A hybrid lattice-reduction and meet-in-the-middle attack
against NTRU. In Alfred Menezes, editor, Advances in Cryptology - CRYPTO 2007,
27th Annual International Cryptology Conference, Santa Barbara, CA, USA, August
19-23, 2007, Proceedings, volume 4622 of Lecture Notes in Computer Science, pages
150–169. Springer, 2007. https://www.iacr.org/archive/crypto2007/46220150/

46220150.pdf.

[56] Nick Howgrave-Graham, Phong Q. Nguyen, David Pointcheval, John Proos, Joseph H.
Silverman, Ari Singer, and William Whyte. The impact of decryption failures on the se-
curity of NTRU encryption. In Dan Boneh, editor, Advances in Cryptology - CRYPTO
2003, 23rd Annual International Cryptology Conference, Santa Barbara, California,
USA, August 17-21, 2003, Proceedings, volume 2729 of Lecture Notes in Computer Sci-
ence, pages 226–246. Springer, 2003. http://www.di.ens.fr/~pointche/Documents/

Papers/2003_crypto.pdf.

[57] Nick Howgrave-Graham, Joseph H Silverman, and William Whyte. A meet-in-the-
middle attack on an NTRU private key. Technical report, NTRU Cryptosystems,
June 2003. Report, 2003. https://www.securityinnovation.com/uploads/Crypto/

NTRUTech004v2.pdf.

[58] Nick Howgrave-Graham, Joseph H. Silverman, and William Whyte. Choosing parameter
sets for NTRUEncrypt with NAEP and SVES-3, 2005. https://eprint.iacr.org/

2005/045.

[59] Ravi Kannan. Improved algorithms for integer programming and related lattice prob-
lems. In Proceedings of the Fifteenth Annual ACM Symposium on Theory of Computing,
STOC ’83, pages 193–206, New York, NY, USA, 1983. ACM.

[60] Paul Kirchner and Pierre-Alain Fouque. Revisiting lattice attacks on overstretched
NTRU parameters. In Coron and Nielsen [37], pages 3–26. https://www.di.ens.fr/

~fouque/euro17a.pdf.

[61] Robert Krauthgamer, editor. Proceedings of the Twenty-Seventh Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2016, Arlington, VA, USA, January 10-12,
2016. SIAM, 2016.

76

https://assets.securityinnovation.com/static/downloads/NTRU/resources/params.pdf
https://assets.securityinnovation.com/static/downloads/NTRU/resources/params.pdf
https://eprint.iacr.org/2015/708
https://www.iacr.org/archive/crypto2007/46220150/46220150.pdf
https://www.iacr.org/archive/crypto2007/46220150/46220150.pdf
http://www.di.ens.fr/~pointche/Documents/Papers/2003_crypto.pdf
http://www.di.ens.fr/~pointche/Documents/Papers/2003_crypto.pdf
https://www.securityinnovation.com/uploads/Crypto/NTRUTech004v2.pdf
https://www.securityinnovation.com/uploads/Crypto/NTRUTech004v2.pdf
https://eprint.iacr.org/2005/045
https://eprint.iacr.org/2005/045
https://www.di.ens.fr/~fouque/euro17a.pdf
https://www.di.ens.fr/~fouque/euro17a.pdf

[62] Po-Chun Kuo, Michael Schneider, Özgür Dagdelen, Jan Reichelt, Johannes A. Buch-
mann, Chen-Mou Cheng, and Bo-Yin Yang. Extreme enumeration on GPU and in
clouds: How many dollars you need to break SVP challenges. In Bart Preneel and
Tsuyoshi Takagi, editors, Cryptographic Hardware and Embedded Systems - CHES 2011
- 13th International Workshop, Nara, Japan, September 28 - October 1, 2011. Proceed-
ings, volume 6917 of Lecture Notes in Computer Science, pages 176–191. Springer, 2011.
http://www.iis.sinica.edu.tw/papers/byyang/12158-F.pdf.

[63] Thijs Laarhoven. Sieving for shortest vectors in lattices using angular locality-sensitive
hashing. In Rosario Gennaro and Matthew Robshaw, editors, Advances in Cryptology -
CRYPTO 2015 - 35th Annual Cryptology Conference, Santa Barbara, CA, USA, August
16-20, 2015, Proceedings, Part I, volume 9215 of Lecture Notes in Computer Science,
pages 3–22. Springer, 2015. https://eprint.iacr.org/2014/744.pdf.

[64] Thijs Laarhoven and Artur Mariano. Progressive lattice sieving. In Tanja Lange
and Rainer Steinwandt, editors, Post-Quantum Cryptography - 9th International Con-
ference, PQCrypto 2018, Fort Lauderdale, FL, USA, April 9-11, 2018, Proceedings,
volume 10786 of Lecture Notes in Computer Science, pages 292–311. Springer, 2018.
https://eprint.iacr.org/2018/079.

[65] Thijs Laarhoven, Michele Mosca, and Joop van de Pol. Finding shortest lattice vectors
faster using quantum search. Des. Codes Cryptography, 77(2-3):375–400, 2015. https:
//eprint.iacr.org/2014/907.

[66] Adam Langley. How to botch TLS forward secrecy, 2013. https://www.

imperialviolet.org/2013/06/27/botchingpfs.html.

[67] Vadim Lyubashevsky. Future directions in lattice cryptography (talk slides), 2016.
http://troll.iis.sinica.edu.tw/pkc16/slides/Invited_Talk_II--Directions_

in_Practical_Lattice_Cryptography.pptx.

[68] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and learning
with errors over rings. J. ACM, 60(6):43, 2013. https://eprint.iacr.org/2012/230.

[69] Alexander May and Joseph H. Silverman. Dimension reduction methods for convolu-
tion modular lattices. In Joseph H. Silverman, editor, Cryptography and Lattices, In-
ternational Conference, CaLC 2001, Providence, RI, USA, March 29-30, 2001, Revised
Papers, volume 2146 of Lecture Notes in Computer Science, pages 110–125. Springer,
2001.

[70] Alfred Menezes. Another look at HMQV. J. Mathematical Cryptology, 1(1):47–64, 2007.
https://eprint.iacr.org/2005/205.

[71] Christopher Meyer, Juraj Somorovsky, Eugen Weiss, Jörg Schwenk, Sebastian Schinzel,
and Erik Tews. Revisiting SSL/TLS implementations: New Bleichenbacher side
channels and attacks. In Kevin Fu and Jaeyeon Jung, editors, Proceedings of the
23rd USENIX Security Symposium, San Diego, CA, USA, August 20-22, 2014.,

77

http://www.iis.sinica.edu.tw/papers/byyang/12158-F.pdf
https://eprint.iacr.org/2014/744.pdf
https://eprint.iacr.org/2018/079
https://eprint.iacr.org/2014/907
https://eprint.iacr.org/2014/907
https://www.imperialviolet.org/2013/06/27/botchingpfs.html
https://www.imperialviolet.org/2013/06/27/botchingpfs.html
http://troll.iis.sinica.edu.tw/pkc16/slides/Invited_Talk_II--Directions_in_Practical_Lattice_Cryptography.pptx
http://troll.iis.sinica.edu.tw/pkc16/slides/Invited_Talk_II--Directions_in_Practical_Lattice_Cryptography.pptx
https://eprint.iacr.org/2012/230
https://eprint.iacr.org/2005/205

pages 733–748. USENIX Association, 2014. https://www.usenix.org/conference/

usenixsecurity14/technical-sessions/presentation/meyer.

[72] Phong Q. Nguyen and Thomas Vidick. Sieve algorithms for the shortest vector problem
are practical. J. Mathematical Cryptology, 2(2):181–207, 2008. https://people.csail.
mit.edu/vidick/JoMC08.pdf.

[73] Paul C. van Oorschot and Michael J. Wiener. Parallel collision search with cryptana-
lytic applications. J. Cryptology, 12(1):1–28, 1999. http://people.scs.carleton.ca/

~paulv/papers/JoC97.pdf.

[74] Chris Peikert. Public-key cryptosystems from the worst-case shortest vector problem:
extended abstract. In Michael Mitzenmacher, editor, Proceedings of the 41st Annual
ACM Symposium on Theory of Computing, STOC 2009, Bethesda, MD, USA, May 31
- June 2, 2009, pages 333–342. ACM, 2009. https://eprint.iacr.org/2008/481.

[75] Chris Peikert. “A useful fact about Ring-LWE that should be known better: it is
at least as hard to break as NTRU, and likely strictly harder. 1/” (tweet), 2017.
http://archive.is/B9KEW.

[76] Alice Pellet-Mary, Guillaume Hanrot, and Damien Stehlé. Approx-SVP in ideal lattices
with pre-processing, 2019. https://eprint.iacr.org/2019/215.

[77] Peter Pessl, Leon Groot Bruinderink, and Yuval Yarom. To BLISS-B or not to be:
Attacking strongSwan’s implementation of post-quantum signatures. In CCS, pages
1843–1855. ACM, 2017. https://eprint.iacr.org/2017/490.

[78] Thomas Peyrin and Steven D. Galbraith, editors. Advances in Cryptology - ASI-
ACRYPT 2018 - 24th International Conference on the Theory and Application of Cryp-
tology and Information Security, Brisbane, QLD, Australia, December 2-6, 2018, Pro-
ceedings, Part I, volume 11272 of Lecture Notes in Computer Science. Springer, 2018.

[79] Michael Pohst. On the computation of lattice vectors of minimal length, successive
minima and reduced bases with applications. SIGSAM Bull., 15(1):37–44, February
1981.

[80] Thomas Pöppelmann and Tim Güneysu. Towards practical lattice-based public-key
encryption on reconfigurable hardware. In Tanja Lange, Kristin E. Lauter, and Petr
Lisonek, editors, Selected Areas in Cryptography - SAC 2013 - 20th International Con-
ference, Burnaby, BC, Canada, August 14-16, 2013, Revised Selected Papers, volume
8282 of Lecture Notes in Computer Science, pages 68–85. Springer, 2013. https:

//www.ei.rub.de/media/sh/veroeffentlichungen/2013/08/14/lwe_encrypt.pdf.

[81] Xavier Pujol and Damien Stehlé. Solving the shortest lattice vector problem in time
22.465n. IACR Cryptology ePrint Archive, 2009. https://eprint.iacr.org/2009/605.

[82] Markku-Juhani O. Saarinen. HILA5: on reliability, reconciliation, and error correction
for Ring-LWE encryption. In Adams and Camenisch [1], pages 192–212. https://

eprint.iacr.org/2017/424.

78

https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/meyer
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/meyer
https://people.csail.mit.edu/vidick/JoMC08.pdf
https://people.csail.mit.edu/vidick/JoMC08.pdf
http://people.scs.carleton.ca/~paulv/papers/JoC97.pdf
http://people.scs.carleton.ca/~paulv/papers/JoC97.pdf
https://eprint.iacr.org/2008/481
http://archive.is/B9KEW
https://eprint.iacr.org/2019/215
https://eprint.iacr.org/2017/490
https://www.ei.rub.de/media/sh/veroeffentlichungen/2013/08/14/lwe_encrypt.pdf
https://www.ei.rub.de/media/sh/veroeffentlichungen/2013/08/14/lwe_encrypt.pdf
https://eprint.iacr.org/2009/605
https://eprint.iacr.org/2017/424
https://eprint.iacr.org/2017/424

[83] Tsunekazu Saito, Keita Xagawa, and Takashi Yamakawa. Tightly-secure key-
encapsulation mechanism in the quantum random oracle model. In Jesper Buus
Nielsen and Vincent Rijmen, editors, Advances in Cryptology - EUROCRYPT 2018
- 37th Annual International Conference on the Theory and Applications of Crypto-
graphic Techniques, Tel Aviv, Israel, April 29 - May 3, 2018 Proceedings, Part III,
volume 10822 of Lecture Notes in Computer Science, pages 520–551. Springer, 2018.
https://eprint.iacr.org/2017/1005.

[84] Halvor Sakshaug. Security analysis of the NTRUEncrypt public key encryption
scheme, 2007. brage.bibsys.no/xmlui/bitstream/handle/11250/258846/426901_

FULLTEXT01.pdf.

[85] John M. Schanck. A comparison of NTRU variants. IACR Cryptology ePrint Archive,
2018:1174, 2018. https://eprint.iacr.org/2018/1174.

[86] Claus-Peter Schnorr. Lattice reduction by random sampling and birthday methods.
In Helmut Alt and Michel Habib, editors, STACS, volume 2607 of Lecture Notes in
Computer Science, pages 145–156. Springer, 2003. http://www.math.uni-frankfurt.
de/~dmst/research/papers/schnorr.random_sampling.2003.ps.

[87] Claus-Peter Schnorr and M. Euchner. Lattice basis reduction: Improved practical algo-
rithms and solving subset sum problems. Math. Program., 66:181–199, 1994.

[88] Claus-Peter Schnorr and Adi Shamir. An optimal sorting algorithm for mesh connected
computers. In Juris Hartmanis, editor, Proceedings of the 18th Annual ACM Symposium
on Theory of Computing, May 28-30, 1986, Berkeley, California, USA, pages 255–263.
ACM, 1986.

[89] Victor Shoup. A proposal for an ISO standard for public key encryption. IACR Cryp-
tology ePrint Archive, 2001. https://eprint.iacr.org/2001/112.

[90] Victor Shoup. OAEP reconsidered. J. Cryptology, 15(4):223–249, 2002. https://

eprint.iacr.org/2000/060.

[91] Martijn Stam. A key encapsulation mechanism for NTRU. In Nigel P. Smart, editor,
Cryptography and Coding, 10th IMA International Conference, Cirencester, UK, De-
cember 19-21, 2005, Proceedings, volume 3796 of Lecture Notes in Computer Science,
pages 410–427. Springer, 2005.

[92] Damien Stehlé and Ron Steinfeld. Making NTRU as secure as worst-case problems
over ideal lattices. In Kenneth G. Paterson, editor, Advances in Cryptology - EU-
ROCRYPT 2011 - 30th Annual International Conference on the Theory and Applica-
tions of Cryptographic Techniques, Tallinn, Estonia, May 15-19, 2011. Proceedings,
volume 6632 of Lecture Notes in Computer Science, pages 27–47. Springer, 2011.
https://www.iacr.org/archive/eurocrypt2011/66320027/66320027.pdf.

[93] Iljitsch van Beijnum. Internet packet sizes part 2: IPv4 path MTU discovery is dead,
2014. http://www.bgpexpert.com/article.php?article=152.

79

https://eprint.iacr.org/2017/1005
brage.bibsys.no/xmlui/bitstream/handle/11250/258846/426901_FULLTEXT01.pdf
brage.bibsys.no/xmlui/bitstream/handle/11250/258846/426901_FULLTEXT01.pdf
https://eprint.iacr.org/2018/1174
http://www.math.uni-frankfurt.de/~dmst/research/papers/schnorr.random_sampling.2003.ps
http://www.math.uni-frankfurt.de/~dmst/research/papers/schnorr.random_sampling.2003.ps
https://eprint.iacr.org/2001/112
https://eprint.iacr.org/2000/060
https://eprint.iacr.org/2000/060
https://www.iacr.org/archive/eurocrypt2011/66320027/66320027.pdf
http://www.bgpexpert.com/article.php?article=152

[94] Iljitsch van Beijnum. Maximum packet sizes on the internet, 2014. http://www.

bgpexpert.com/article.php?article=151.

[95] Christine van Vredendaal. Reduced memory meet-in-the-middle attack against the
NTRU private key. LMS Journal of Computation and Mathematics, 19(A):43–57, 001
2016. https://eprint.iacr.org/2016/177.

[96] Thomas Wunderer. Revisiting the hybrid attack: Improved analysis and refined security
estimates, 2016. https://eprint.iacr.org/2016/733.

[97] Thomas Wunderer. On the Security of Lattice-Based Cryptography Against Lattice Re-
duction and Hybrid Attacks. PhD thesis, Darmstadt University of Technology, Germany,
2018. https://tuprints.ulb.tu-darmstadt.de/8082/.

80

http://www.bgpexpert.com/article.php?article=151
http://www.bgpexpert.com/article.php?article=151
https://eprint.iacr.org/2016/177
https://eprint.iacr.org/2016/733
https://tuprints.ulb.tu-darmstadt.de/8082/

104

112

120

128

144

160

176

192

208

224

240

256

288

320

352

384

416

448

480

512

640 704 768 832 896 960 1024 1088 1152 1216 1280 1344 1408 1472 1536

76
1

0.
38

61
9

0.
70

61
3

0.
44

82
9

0.
12

61
3

0.
34

58
7

0.
88

43
3

0.
71

55
7

0.
53

57
7

0.
20

45
7

0.
82

57
1

0.
46

65
3

0.
44

49
1

0.
22

61
3

0.
15

65
9

0.
20

58
7

0.
56

61
9

0.
95

72
7

0.
50

85
3

0.
71

71
9

0.
79

88
1

0.
23

61
3

0.
93

86
3

0.
63

82
3

0.
34

43
3

0.
57

75
7

0.
31

52
3

0.
85

85
9

0.
91

86
3

0.
30

78
7

0.
34

75
7

0.
65

10
87

 0
.1

2

88
3

0.
57

10
09

 0
.2

6

75
1

0.
32

73
9

0.
83

56
9

0.
17

52
3

0.
40

94
1

0.
17

80
9

0.
14

64
7

0.
34

48
7

0.
25

59
3

0.
15

74
3

0.
95

64
3

0.
61

82
3

0.
85

46
3

0.
92

75
1

0.
25

61
9

0.
09

95
3

0.
42

77
3

0.
79

77
3

0.
07

10
09

 0
.0

8

47
9

0.
74

46
3

0.
87

44
3

0.
47

54
7

0.
34

45
7

0.
42

61
9

0.
98

57
1

0.
78

65
3

0.
22

68
3

0.
51

65
9

0.
64

82
7

0.
55

77
3

0.
67

85
7

0.
38

71
9

0.
92

65
3

0.
81

54
1

0.
28

82
7

0.
99

61
3

0.
34

82
3

0.
85

73
9

0.
83

65
3

0.
44

52
3

0.
85

46
3

0.
92

82
3

0.
34

57
1

0.
78

54
7

0.
34

68
3

0.
51

10
87

 0
.1

2

45
7

0.
42

65
9

0.
64

10
09

 0
.0

8

54
1

0.
28

72
7

0.
50

71
9

0.
92

44
3

0.
47

74
3

0.
95

57
1

0.
46

80
9

0.
14

49
1

0.
22

57
7

0.
20

88
1

0.
23

86
3

0.
63

85
3

0.
71

61
9

0.
95

65
3

0.
22

77
3

0.
79

75
7

0.
65

61
3

0.
93

65
9

0.
20

59
3

0.
15

58
7

0.
56

61
9

0.
98

82
7

0.
99

75
1

0.
25

65
3

0.
81

10
09

 0
.2

6

55
7

0.
53

61
9

0.
09

43
3

0.
71

75
7

0.
31

48
7

0.
25

82
9

0.
12

45
7

0.
82

95
3

0.
42

82
7

0.
55

71
9

0.
79

61
3

0.
44

47
9

0.
74

56
9

0.
17

43
3

0.
57

77
3

0.
67

52
3

0.
40

76
1

0.
38

61
9

0.
70

78
7

0.
34

94
1

0.
17

86
3

0.
30

88
3

0.
57

61
3

0.
15

58
7

0.
88

64
3

0.
61

85
7

0.
38

64
7

0.
34

75
1

0.
32

46
3

0.
87

85
9

0.
91

77
3

0.
07

Figure 4: Estimated pre-quantum security level against known attacks, assuming
enumeration-based model of BKZ-β cost, assuming free access to memory. Horizontal axis:
p log256 q. Label: p, w/p. Log scale. Red: Ignoring hybrid attacks. Blue: Accounting for all
attacks. See text for caveats regarding estimates.

81

128

144

160

176

192

208

224

240

256

288

320

352

384

416

448

480

512

640 704 768 832 896 960 1024 1088 1152 1216 1280 1344 1408 1472 1536

64
3

0.
61

77
3

0.
79

56
9

0.
17

88
3

0.
57

80
9

0.
14

59
3

0.
15

64
7

0.
34

46
3

0.
87

78
7

0.
34

48
7

0.
25

54
7

0.
34

45
7

0.
42

77
3

0.
07

61
9

0.
98

82
3

0.
8582

7
0.

55

75
1

0.
25

61
9

0.
09

65
3

0.
44

68
3

0.
51

46
3

0.
92

44
3

0.
47

54
1

0.
28

82
9

0.
12

85
7

0.
38

94
1

0.
17

73
9

0.
83

10
09

 0
.2

6

65
3

0.
22

77
3

0.
67

47
9

0.
74

75
7

0.
65

57
1

0.
78

82
7

0.
99

10
87

 0
.1

2

65
3

0.
81

65
9

0.
64

61
3

0.
15

65
9

0.
20

45
7

0.
82

55
7

0.
53

61
3

0.
44

74
3

0.
95

61
9

0.
70

57
7

0.
20

76
1

0.
38

71
9

0.
92

58
7

0.
56

71
9

0.
79

95
3

0.
42

58
7

0.
88

72
7

0.
50

61
3

0.
34

43
3

0.
57

88
1

0.
23

43
3

0.
71

61
9

0.
95

49
1

0.
22

52
3

0.
85

57
1

0.
46

75
1

0.
32

82
3

0.
34

85
3

0.
71

86
3

0.
30

75
7

0.
31

52
3

0.
40

85
9

0.
91

86
3

0.
63

10
09

 0
.0

8

61
3

0.
93

82
7

0.
55

75
1

0.
25

88
3

0.
57

88
1

0.
23

56
9

0.
17

94
1

0.
17

61
9

0.
98

61
3

0.
44

43
3

0.
57

52
3

0.
40

65
9

0.
64

45
7

0.
82

10
87

 0
.1

2

64
7

0.
34

75
1

0.
32

78
7

0.
34

85
9

0.
91

58
7

0.
88

54
7

0.
34

86
3

0.
30

61
9

0.
70

61
3

0.
15

64
3

0.
61

65
3

0.
22

85
7

0.
38

10
09

 0
.2

6

46
3

0.
92

72
7

0.
50

54
1

0.
28

52
3

0.
85

61
9

0.
95

68
3

0.
51

46
3

0.
87

95
3

0.
42

57
7

0.
20

74
3

0.
95

57
1

0.
78 80

9
0.

14

44
3

0.
47

43
3

0.
71

65
3

0.
44

65
9

0.
20

76
1

0.
38

55
7

0.
53

58
7

0.
56

85
3

0.
71

10
09

 0
.0

8

75
7

0.
65

73
9

0.
83

57
1

0.
46

86
3

0.
63

65
3

0.
81

61
3

0.
34

82
7

0.
99

82
3

0.
85

49
1

0.
22

82
9

0.
12

45
7

0.
42

59
3

0.
15

75
7

0.
31

71
9

0.
92

77
3

0.
07

61
9

0.
09

61
3

0.
93

77
3

0.
79

82
3

0.
34

71
9

0.
79

77
3

0.
67

48
7

0.
25

47
9

0.
74

Figure 5: Estimated pre-quantum security level against known attacks, assuming
enumeration-based model of BKZ-β cost, accounting for real cost of memory. Horizontal
axis: p log256 q. Label: p, w/p. Log scale. Red: Ignoring hybrid attacks. Blue: Accounting
for all attacks. See text for caveats regarding estimates.

82

80

88

96

104

112

120

128

144

160

176

192

208

640 704 768 832 896 960 1024 1088 1152 1216 1280 1344 1408 1472 1536

77
3

0.
67

49
1

0.
22

54
7

0.
34

85
9

0.
91

82
9

0.
12

57
1

0.
78

71
9

0.
79

61
3

0.
15

61
9

0.
95

75
7

0.
65

82
3

0.
34

43
3

0.
57

72
7

0.
50

82
7

0.
55

78
7

0.
34

54
1

0.
28

88
1

0.
23

75
7

0.
31

65
9

0.
64

65
3

0.
22

61
3

0.
34

61
3

0.
93

64
3

0.
61

61
9

0.
70

75
1

0.
25

55
7

0.
53

48
7

0.
25

86
3

0.
30

57
1

0.
46

10
09

 0
.2

6

58
7

0.
56

56
9

0.
17

86
3

0.
63

45
7

0.
42

61
9

0.
98

85
7

0.
38

59
3

0.
15

44
3

0.
47

77
3

0.
79

80
9

0.
14

95
3

0.
42

57
7

0.
20

76
1

0.
38

64
7

0.
34

46
3

0.
87

65
3

0.
44

61
3

0.
44

65
9

0.
20

75
1

0.
32

77
3

0.
07

94
1

0.
17

52
3

0.
85

68
3

0.
51

46
3

0.
92

52
3

0.
40

58
7

0.
88

88
3

0.
57

10
87

 0
.1

2

65
3

0.
81

82
3

0.
85

43
3

0.
71

45
7

0.
82

74
3

0.
95

47
9

0.
74

61
9

0.
09

73
9

0.
83

71
9

0.
92

82
7

0.
99

85
3

0.
7110

09
 0

.0
8

71
9

0.
79

44
3

0.
47

57
7

0.
20

88
3

0.
57

43
3

0.
71

82
3

0.
34

52
3

0.
85

61
9

0.
95

68
3

0.
51

10
09

 0
.0

8

64
3

0.
61

57
1

0.
46

45
7

0.
42

73
9

0.
83

94
1

0.
17

82
7

0.
99

71
9

0.
92

85
3

0.
71

61
3

0.
34

82
3

0.
85

55
7

0.
53

82
7

0.
55

49
1

0.
22

75
1

0.
32

57
1

0.
78

80
9

0.
14

64
7

0.
34

59
3

0.
15

52
3

0.
40

77
3

0.
67

61
9

0.
98

61
3

0.
15

75
7

0.
65

75
7

0.
31

47
9

0.
74

10
87

 0
.1

2

85
7

0.
38

75
1

0.
25

46
3

0.
87

10
09

 0
.2

6

65
3

0.
44

61
3

0.
44

65
3

0.
22

65
9

0.
64

88
1

0.
23

61
9

0.
09

46
3

0.
92

78
7

0.
34

95
3

0.
42

56
9

0.
17

82
9

0.
12

48
7

0.
25

86
3

0.
63

58
7

0.
88

61
9

0.
70

61
3

0.
93

45
7

0.
82

54
1

0.
28

74
3

0.
95

76
1

0.
38

85
9

0.
91

43
3

0.
57

77
3

0.
79

54
7

0.
34

77
3

0.
07

58
7

0.
56

65
3

0.
81

86
3

0.
30

72
7

0.
50

65
9

0.
20

Figure 6: Estimated pre-quantum security level against known attacks, assuming sieving-
based model of BKZ-β cost, assuming free access to memory. Horizontal axis: p log256 q.
Label: p, w/p. Log scale. Red: Ignoring hybrid attacks. Blue: Accounting for all attacks.
See text for caveats regarding estimates.

83

112

120

128

144

160

176

192

208

224

240

256

640 704 768 832 896 960 1024 1088 1152 1216 1280 1344 1408 1472 1536

61
9

0.
70

75
1

0.
25

57
1

0.
46

48
7

0.
25

74
3

0.
95

61
3

0.
44

77
3

0.
79

77
3

0.
07

65
9

0.
20

85
7

0.
38

46
3

0.
87

75
7

0.
6576

1
0.

38

75
1

0.
32

44
3

0.
47

52
3

0.
40

77
3

0.
67

59
3

0.
15

45
7

0.
82

95
3

0.
42

10
09

 0
.0

8

57
7

0.
20

46
3

0.
92

71
9

0.
92

94
1

0.
17

85
9

0.
91

54
7

0.
34

86
3

0.
63

71
9

0.
79

58
7

0.
88

88
3

0.
57

47
9

0.
74

43
3

0.
71

61
9

0.
09

65
9

0.
64

52
3

0.
85

68
3

0.
51

65
3

0.
81

85
3

0.
71

75
7

0.
31

61
3

0.
15

82
9

0.
12

65
3

0.
22

88
1

0.
23

82
7

0.
55

57
1

0.
78

49
1

0.
22

43
3

0.
57

82
7

0.
99

86
3

0.
30

54
1

0.
28

56
9

0.
17

65
3

0.
44

64
3

0.
61

72
7

0.
50

55
7

0.
53

10
87

 0
.1

2

61
9

0.
95

61
3

0.
93

58
7

0.
56

73
9

0.
83

82
3

0.
34

78
7

0.
34

10
09

 0
.2

6

82
3

0.
85

61
3

0.
34

45
7

0.
42

80
9

0.
14

61
9

0.
98

64
7

0.
34

61
9

0.
98

47
9

0.
74

75
7

0.
31

61
9

0.
70

46
3

0.
92

61
3

0.
93

77
3

0.
07

61
3

0.
44

61
9

0.
09

65
3

0.
81

46
3

0.
87

48
7

0.
25

58
7

0.
88

65
9

0.
64

88
3

0.
57

57
1

0.
78

56
9

0.
17

85
9

0.
91

88
1

0.
23

10
87

 0
.1

2

65
3

0.
22

54
1

0.
28

85
7

0.
38

43
3

0.
57

74
3

0.
95

75
1

0.
25

44
3

0.
47

61
3

0.
15

58
7

0.
56

72
7

0.
50

57
1

0.
46

65
9

0.
20

52
3

0.
85

68
3

0.
51

10
09

 0
.2

6

57
7

0.
20

77
3

0.
79

86
3

0.
30

45
7

0.
82

54
7

0.
34

76
1

0.
38

43
3

0.
71

49
1

0.
22

78
7

0.
34

82
9

0.
12

82
3

0.
34

71
9

0.
79

77
3

0.
67

85
3

0.
71

61
9

0.
95

86
3

0.
63

61
3

0.
34

82
3

0.
85

82
7

0.
99

45
7

0.
42

59
3

0.
15

82
7

0.
55

95
3

0.
42

71
9

0.
92

73
9

0.
83

64
3

0.
61

75
1

0.
32

65
3

0.
44

52
3

0.
40

94
1

0.
17

10
09

 0
.0

8

55
7

0.
53

80
9

0.
14

75
7

0.
65

64
7

0.
34

Figure 7: Estimated pre-quantum security level against known attacks, assuming sieving-
based model of BKZ-β cost, accounting for real cost of memory. Horizontal axis: p log256 q.
Label: p, w/p. Log scale. Red: Ignoring hybrid attacks. Blue: Accounting for all attacks.
See text for caveats regarding estimates.

84

80

88

96

104

112

120

128

144

160

176

192

208

224

240

256

640 704 768 832 896 960 1024 1088 1152 1216 1280 1344 1408 1472 1536

43
3

0.
71

65
9

0.
20

55
7

0.
53

10
09

 0
.0

8

72
7

0.
50

58
7

0.
56

78
7

0.
34

71
9

0.
92

61
3

0.
44

61
9

0.
70

64
7

0.
34

57
7

0.
20

10
87

 0
.1

2

85
7

0.
38

68
3

0.
51

58
7

0.
88

82
9

0.
12

61
3

0.
34

76
1

0.
38

86
3

0.
30

45
7

0.
82

54
1

0.
28

82
7

0.
99

65
9

0.
64

49
1

0.
22

57
1

0.
78

45
7

0.
42

94
1

0.
17

54
7

0.
34

74
3

0.
95

85
9

0.
91

65
3

0.
22

43
3

0.
57

52
3

0.
40

77
3

0.
79

61
9

0.
98

44
3

0.
47 46

3
0.

87

64
3

0.
61

75
7

0.
65

59
3

0.
15

48
7

0.
25

77
3

0.
67

65
3

0.
81

75
1

0.
25

86
3

0.
63

88
1

0.
23

61
9

0.
95

82
3

0.
34

82
3

0.
85

56
9

0.
17

46
3

0.
92

82
7

0.
55

75
1

0.
32

95
3

0.
42

88
3

0.
57

61
9

0.
09

77
3

0.
07

80
9

0.
14

73
9

0.
83

10
09

 0
.2

6

65
3

0.
44

71
9

0.
79

85
3

0.
71

61
3

0.
93

47
9

0.
74

52
3

0.
85

75
7

0.
31

61
3

0.
15

57
1

0.
46

61
3

0.
93

45
7

0.
42

78
7

0.
34

82
3

0.
34

61
3

0.
34

46
3

0.
87

10
09

 0
.2

6

88
3

0.
57

47
9

0.
74

46
3

0.
92

85
9

0.
91

61
3

0.
44

59
3

0.
15

61
9

0.
09

65
3

0.
22

61
9

0.
95

61
9

0.
98

61
3

0.
15

65
3

0.
44

64
7

0.
34

10
87

 0
.1

2

75
1

0.
25

54
7

0.
34

75
1

0.
32

48
7

0.
25

86
3

0.
30

57
7

0.
20

44
3

0.
47

52
3

0.
40

57
1

0.
46

82
7

0.
99

54
1

0.
28

65
3

0.
81

10
09

 0
.0

8

65
9

0.
20

76
1

0.
38

75
7

0.
31

68
3

0.
51

57
1

0.
78

52
3

0.
85

77
3

0.
79

75
7

0.
65

43
3

0.
71

82
3

0.
85

49
1

0.
22

65
9

0.
64

88
1

0.
23

77
3

0.
67

94
1

0.
17

58
7

0.
56

72
7

0.
50

95
3

0.
42

77
3

0.
07

71
9

0.
92

74
3

0.
95

58
7

0.
88

64
3

0.
61

71
9

0.
79

86
3

0.
63

82
9

0.
12

43
3

0.
57

82
7

0.
55

85
7

0.
38

55
7

0.
53

85
3

0.
71

73
9

0.
83

56
9

0.
17

61
9

0.
70

45
7

0.
82

80
9

0.
14

Figure 8: Estimated post-quantum security level against known attacks, assuming
enumeration-based model of BKZ-β cost, assuming free access to memory. Horizontal axis:
p log256 q. Label: p, w/p. Log scale. Red: Ignoring hybrid attacks. Blue: Accounting for all
attacks. See text for caveats regarding estimates.

85

80

88

96

104

112

120

128

144

160

176

192

208

224

240

256

640 704 768 832 896 960 1024 1088 1152 1216 1280 1344 1408 1472 1536

82
3

0.
34

94
1

0.
17

75
1

0.
25

77
3

0.
79

65
3

0.
22

82
3

0.
85

46
3

0.
92

61
9

0.
98

10
87

 0
.1

2

65
3

0.
81

59
3

0.
15

61
9

0.
09

61
9

0.
95

68
3

0.
51

64
3

0.
61

10
09

 0
.2

6

88
1

0.
23

56
9

0.
17

46
3

0.
87

77
3

0.
67

86
3

0.
63

65
3

0.
44

85
3

0.
71

77
3

0.
07

43
3

0.
71

75
7

0.
31

47
9

0.
74

82
7

0.
55

65
9

0.
20

71
9

0.
92

55
7

0.
53

52
3

0.
85

71
9

0.
79

61
3

0.
15

85
7

0.
38

61
9

0.
70

57
1

0.
46

95
3

0.
42

73
9

0.
83

61
3

0.
44

72
7

0.
50

61
3

0.
34

58
7

0.
88

58
7

0.
56

49
1

0.
22

57
7

0.
20

80
9

0.
14

76
1

0.
38

43
3

0.
57

75
7

0.
65

61
3

0.
93

57
1

0.
78

86
3

0.
30

88
3

0.
57

64
7

0.
34

54
1

0.
28

10
09

 0
.0

8

75
1

0.
32

65
9

0.
64

74
3

0.
95

82
7

0.
99

54
7

0.
34

48
7

0.
25

85
9

0.
91

82
9

0.
12

44
3

0.
47

78
7

0.
34

45
7

0.
82

52
3

0.
40

45
7

0.
42

49
1

0.
22

65
3

0.
81

68
3

0.
51

64
3

0.
61

82
9

0.
12

82
3

0.
85

75
7

0.
31

54
1

0.
28

72
7

0.
50

10
09

 0
.0

8

71
9

0.
92

77
3

0.
67

65
9

0.
20

65
9

0.
64

74
3

0.
95

58
7

0.
56

58
7

0.
88

75
1

0.
32

86
3

0.
30

52
3

0.
85

94
1

0.
17

73
9

0.
83

88
1

0.
23

77
3

0.
07

61
3

0.
93

86
3

0.
63

82
3

0.
34

85
3

0.
71

45
7

0.
42

43
3

0.
57

46
3

0.
87

10
87

 0
.1

2

61
9

0.
70

71
9

0.
79

82
7

0.
55

55
7

0.
53

10
09

 0
.2

6

78
7

0.
34

82
7

0.
99

45
7

0.
82

65
3

0.
44

61
9

0.
09

61
9

0.
98

61
3

0.
15

44
3

0.
47

61
3

0.
44

56
9

0.
17

95
3

0.
42

77
3

0.
79

61
9

0.
95

85
9

0.
91

59
3

0.
15

47
9

0.
74

48
7

0.
25

75
1

0.
25

46
3

0.
92

76
1

0.
38

64
7

0.
34

65
3

0.
22

57
1

0.
46

88
3

0.
57

52
3

0.
40

75
7

0.
65

57
7

0.
20

54
7

0.
34

80
9

0.
14

61
3

0.
34

43
3

0.
71

85
7

0.
38

57
1

0.
78

Figure 9: Estimated post-quantum security level against known attacks, assuming
enumeration-based model of BKZ-β cost, accounting for real cost of memory. Horizontal
axis: p log256 q. Label: p, w/p. Log scale. Red: Ignoring hybrid attacks. Blue: Accounting
for all attacks. See text for caveats regarding estimates.

86

72

80

88

96

104

112

120

128

144

160

176

192

640 704 768 832 896 960 1024 1088 1152 1216 1280 1344 1408 1472 1536

85
7

0.
38

55
7

0.
53

47
9

0.
74

46
3

0.
92

78
7

0.
34

72
7

0.
50

10
09

 0
.2

6

59
3

0.
15

57
1

0.
78

75
1

0.
32

57
7

0.
20

86
3

0.
30

61
3

0.
34

10
87

 0
.1

2

61
3

0.
44

65
3

0.
22

54
1

0.
28

85
3

0.
71

82
9

0.
12

49
1

0.
22

43
3

0.
71

45
7

0.
82

61
9

0.
70

75
7

0.
6576

1
0.

38

71
9

0.
92

80
9

0.
14

61
3

0.
15

82
7

0.
99

61
9

0.
09

52
3

0.
40

82
3

0.
85

61
9

0.
95

65
9

0.
64

64
3

0.
61

43
3

0.
57

52
3

0.
85

94
1

0.
17

64
7

0.
3465

9
0.

20

48
7

0.
25

85
9

0.
91

71
9

0.
79

88
1

0.
23

65
3

0.
44

46
3

0.
87

77
3

0.
67

45
7

0.
42

44
3

0.
47

74
3

0.
95

56
9

0.
17

65
3

0.
81

95
3

0.
42

61
9

0.
98

58
7

0.
88

77
3

0.
07

58
7

0.
56

77
3

0.
79

86
3

0.
63

61
3

0.
93

68
3

0.
51

75
1

0.
25

82
7

0.
55

54
7

0.
34

57
1

0.
46

10
09

 0
.0

8

88
3

0.
57

75
7

0.
31

73
9

0.
83

82
3

0.
34

58
7

0.
88

82
3

0.
85

56
9

0.
17

65
3

0.
22

76
1

0.
38

65
9

0.
64

71
9

0.
92

68
3

0.
51

61
9

0.
70

65
3

0.
44

64
7

0.
34

85
3

0.
71

64
3

0.
61

59
3

0.
15

86
3

0.
30

95
3

0.
42

44
3

0.
47

88
3

0.
57

82
3

0.
34

52
3

0.
40

77
3

0.
79

75
1

0.
25

86
3

0.
63

46
3

0.
92

75
7

0.
65

57
7

0.
20

52
3

0.
85

61
3

0.
44

61
9

0.
98

10
09

 0
.0

8

85
7

0.
38

57
1

0.
46 58

7
0.

56

82
9

0.
12

88
1

0.
23

77
3

0.
67

10
87

 0
.1

2

65
9

0.
20

57
1

0.
78

54
1

0.
28

61
9

0.
09

61
3

0.
34

46
3

0.
87

94
1

0.
17

61
9

0.
95

45
7

0.
42

75
7

0.
31

54
7

0.
34

61
3

0.
15

10
09

 0
.2

6

85
9

0.
91

49
1

0.
22

45
7

0.
82

82
7

0.
99

78
7

0.
34

47
9

0.
74

43
3

0.
71

55
7

0.
53

80
9

0.
14

77
3

0.
07

71
9

0.
7972

7
0.

50

75
1

0.
32

61
3

0.
93

43
3

0.
57

65
3

0.
81

73
9

0.
83

48
7

0.
25

74
3

0.
95

82
7

0.
55

Figure 10: Estimated post-quantum security level against known attacks, assuming sieving-
based model of BKZ-β cost, assuming free access to memory. Horizontal axis: p log256 q.
Label: p, w/p. Log scale. Red: Ignoring hybrid attacks. Blue: Accounting for all attacks.
See text for caveats regarding estimates.

87

88

96

104

112

120

128

144

160

176

192

208

224

240

256

640 704 768 832 896 960 1024 1088 1152 1216 1280 1344 1408 1472 1536

65
3

0.
81

44
3

0.
47

61
9

0.
95

52
3

0.
40

95
3

0.
42

74
3

0.
95

86
3

0.
63

94
1

0.
17

68
3

0.
51

46
3

0.
87

58
7

0.
88

57
1

0.
46

82
7

0.
55

82
3

0.
85

61
3

0.
93

45
7

0.
42

88
1

0.
23

65
9

0.
20

61
3

0.
34

75
1

0.
25

64
3

0.
61

10
87

 0
.1

2

88
3

0.
57

61
9

0.
98

72
7

0.
50

59
3

0.
15

47
9

0.
74

85
9

0.
91

64
7

0.
34

71
9

0.
92

58
7

0.
56

56
9

0.
17 57

7
0.

20

82
3

0.
34

85
7

0.
38

77
3

0.
07

78
7

0.
34

73
9

0.
83

46
3

0.
92

61
3

0.
44

10
09

 0
.0

8

57
1

0.
78

82
7

0.
99

85
3

0.
71

71
9

0.
79

54
7

0.
34

75
7

0.
65

76
1

0.
38

61
9

0.
70

75
1

0.
32

43
3

0.
71

77
3

0.
79

82
9

0.
12

75
7

0.
31

65
9

0.
64

45
7

0.
82

52
3

0.
85

49
1

0.
22

55
7

0.
53

65
3

0.
22

86
3

0.
30

80
9

0.
14

54
1

0.
28

61
9

0.
09

10
09

 0
.2

6

65
3

0.
44

61
3

0.
15

77
3

0.
67

43
3

0.
57

48
7

0.
25

61
9

0.
95

61
9

0.
09

65
9

0.
20

61
3

0.
34

82
3

0.
34

49
1

0.
22

58
7

0.
56

94
1

0.
17

45
7

0.
42

78
7

0.
34

54
1

0.
28

46
3

0.
87

88
1

0.
23

43
3

0.
71

10
09

 0
.2

6

72
7

0.
50

43
3

0.
57

54
7

0.
34

45
7

0.
82

65
3

0.
81

65
9

0.
64

48
7

0.
25

71
9

0.
79

80
9

0.
14

74
3

0.
95

55
7

0.
53

95
3

0.
42

61
3

0.
93

76
1

0.
38

75
7

0.
31

58
7

0.
88

75
1

0.
25

10
87

 0
.1

2

10
09

 0
.0

8

75
1

0.
32

59
3

0.
15

73
9

0.
83

46
3

0.
92

61
9

0.
70

68
3

0.
51

82
7

0.
55

77
3

0.
67

86
3

0.
63

56
9

0.
17

85
3

0.
71

57
7

0.
20

85
7

0.
38

82
7

0.
99

61
3

0.
15

77
3

0.
07

65
3

0.
44

64
3

0.
61

65
3

0.
22

71
9

0.
92

44
3

0.
47

52
3

0.
85

57
1

0.
46

88
3

0.
57

75
7

0.
65

86
3

0.
30

61
9

0.
98

57
1

0.
78

64
7

0.
34

82
9

0.
12

77
3

0.
79

61
3

0.
44

82
3

0.
85

52
3

0.
40

47
9

0.
74

85
9

0.
91

Figure 11: Estimated post-quantum security level against known attacks, assuming sieving-
based model of BKZ-β cost, accounting for real cost of memory. Horizontal axis: p log256 q.
Label: p, w/p. Log scale. Red: Ignoring hybrid attacks. Blue: Accounting for all attacks.
See text for caveats regarding estimates.

88

	Introduction
	General algorithm specification (part of 2.B.1)
	Shared notation
	Shared theorems
	Streamlined NTRU Prime
	Streamlined NTRU Prime Core parameter space
	Streamlined NTRU Prime Core key generation
	Streamlined NTRU Prime Core encryption
	Streamlined NTRU Prime Core decryption
	Streamlined NTRU Prime parameter space
	Streamlined NTRU Prime key generation
	Streamlined NTRU Prime encapsulation
	Streamlined NTRU Prime decapsulation

	NTRU LPRime
	NTRU LPRime Core parameter space
	NTRU LPRime Core key generation
	NTRU LPRime Core encryption
	NTRU LPRime Core decryption
	NTRU LPRime Expand parameter space
	NTRU LPRime Expand key generation
	NTRU LPRime Expand encryption
	NTRU LPRime Expand decryption
	NTRU LPRime parameter space
	NTRU LPRime key generation
	NTRU LPRime encapsulation
	NTRU LPRime decapsulation

	List of parameter sets (part of 2.B.1)
	Shared choices of parameters
	Shared choices of Streamlined NTRU Prime parameters
	Shared choices of NTRU LPRime parameters
	Parameter set kem/sntrup653
	Parameter set kem/sntrup761
	Parameter set kem/sntrup857
	Parameter set kem/ntrulpr653
	Parameter set kem/ntrulpr761
	Parameter set kem/ntrulpr857

	Design rationale (part of 2.B.1)
	The ring
	The public key
	Inputs and ciphertexts
	Key generation and decryption
	Padding, KEMs, and the choice of q
	The shape of small polynomials
	Modifications for round 2

	Detailed performance analysis (2.B.2)
	Space
	Time
	Does key-generation time matter?
	Do encapsulation time and decapsulation time matter?
	How parameters affect performance

	Analysis of known attacks (2.B.5)
	Warnings
	Attack problems
	Lattice perspectives on the attack problems
	Estimate all the "4266308 LWE,NTRU"5267309 schemes!
	Rotations
	Interlude: memory, parallelization, and the cost of sorting
	Meet-in-the-middle attack
	Hybrid attacks
	The cost of BKZ
	Algebraic attacks
	A selection of estimates

	Expected strength (2.B.4) in general
	Security definitions
	Quantitative security and rationale

	Expected strength (2.B.4) for each parameter set
	Parameter set kem/sntrup653
	Parameter set kem/sntrup761
	Parameter set kem/sntrup857
	Parameter set kem/ntrulpr653
	Parameter set kem/ntrulpr761
	Parameter set kem/ntrulpr857

	Advantages and limitations (2.B.6)
	References

